Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,328 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import (
|
4 |
+
AutoModelForCausalLM, AutoTokenizer, AutoModelForSequenceClassification,
|
5 |
+
T5ForConditionalGeneration, T5Tokenizer, pipeline
|
6 |
+
)
|
7 |
+
import warnings
|
8 |
+
warnings.filterwarnings("ignore")
|
9 |
+
|
10 |
+
class MultiModelHub:
|
11 |
+
def __init__(self):
|
12 |
+
self.models = {}
|
13 |
+
self.tokenizers = {}
|
14 |
+
self.pipelines = {}
|
15 |
+
self.model_configs = {
|
16 |
+
# Text Generation Models
|
17 |
+
"GPT-2 Indonesia": {
|
18 |
+
"model_name": "Lyon28/GPT-2",
|
19 |
+
"type": "text-generation",
|
20 |
+
"description": "GPT-2 fine-tuned untuk bahasa Indonesia"
|
21 |
+
},
|
22 |
+
"Tinny Llama": {
|
23 |
+
"model_name": "Lyon28/Tinny-Llama",
|
24 |
+
"type": "text-generation",
|
25 |
+
"description": "Compact language model untuk chat"
|
26 |
+
},
|
27 |
+
"Pythia": {
|
28 |
+
"model_name": "Lyon28/Pythia",
|
29 |
+
"type": "text-generation",
|
30 |
+
"description": "Pythia model untuk text generation"
|
31 |
+
},
|
32 |
+
"GPT-Neo": {
|
33 |
+
"model_name": "Lyon28/GPT-Neo",
|
34 |
+
"type": "text-generation",
|
35 |
+
"description": "GPT-Neo untuk creative writing"
|
36 |
+
},
|
37 |
+
"Distil GPT-2": {
|
38 |
+
"model_name": "Lyon28/Distil_GPT-2",
|
39 |
+
"type": "text-generation",
|
40 |
+
"description": "Lightweight GPT-2 variant"
|
41 |
+
},
|
42 |
+
"GPT-2 Tinny": {
|
43 |
+
"model_name": "Lyon28/GPT-2-Tinny",
|
44 |
+
"type": "text-generation",
|
45 |
+
"description": "Compact GPT-2 model"
|
46 |
+
},
|
47 |
+
|
48 |
+
# Classification Models
|
49 |
+
"BERT Tinny": {
|
50 |
+
"model_name": "Lyon28/Bert-Tinny",
|
51 |
+
"type": "text-classification",
|
52 |
+
"description": "BERT untuk klasifikasi teks"
|
53 |
+
},
|
54 |
+
"ALBERT Base": {
|
55 |
+
"model_name": "Lyon28/Albert-Base-V2",
|
56 |
+
"type": "text-classification",
|
57 |
+
"description": "ALBERT untuk analisis sentimen"
|
58 |
+
},
|
59 |
+
"DistilBERT": {
|
60 |
+
"model_name": "Lyon28/Distilbert-Base-Uncased",
|
61 |
+
"type": "text-classification",
|
62 |
+
"description": "Efficient BERT untuk classification"
|
63 |
+
},
|
64 |
+
"ELECTRA Small": {
|
65 |
+
"model_name": "Lyon28/Electra-Small",
|
66 |
+
"type": "text-classification",
|
67 |
+
"description": "ELECTRA untuk text understanding"
|
68 |
+
},
|
69 |
+
|
70 |
+
# Text-to-Text Model
|
71 |
+
"T5 Small": {
|
72 |
+
"model_name": "Lyon28/T5-Small",
|
73 |
+
"type": "text2text-generation",
|
74 |
+
"description": "T5 untuk berbagai NLP tasks"
|
75 |
+
}
|
76 |
+
}
|
77 |
+
|
78 |
+
def load_model(self, model_key):
|
79 |
+
"""Load model on-demand untuk menghemat memory"""
|
80 |
+
if model_key in self.pipelines:
|
81 |
+
return self.pipelines[model_key]
|
82 |
+
|
83 |
+
try:
|
84 |
+
config = self.model_configs[model_key]
|
85 |
+
model_name = config["model_name"]
|
86 |
+
model_type = config["type"]
|
87 |
+
|
88 |
+
# Load pipeline berdasarkan type
|
89 |
+
if model_type == "text-generation":
|
90 |
+
pipe = pipeline(
|
91 |
+
"text-generation",
|
92 |
+
model=model_name,
|
93 |
+
tokenizer=model_name,
|
94 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
95 |
+
device_map="auto" if torch.cuda.is_available() else None
|
96 |
+
)
|
97 |
+
elif model_type == "text-classification":
|
98 |
+
pipe = pipeline(
|
99 |
+
"text-classification",
|
100 |
+
model=model_name,
|
101 |
+
tokenizer=model_name
|
102 |
+
)
|
103 |
+
elif model_type == "text2text-generation":
|
104 |
+
pipe = pipeline(
|
105 |
+
"text2text-generation",
|
106 |
+
model=model_name,
|
107 |
+
tokenizer=model_name
|
108 |
+
)
|
109 |
+
else:
|
110 |
+
raise ValueError(f"Unsupported model type: {model_type}")
|
111 |
+
|
112 |
+
self.pipelines[model_key] = pipe
|
113 |
+
return pipe
|
114 |
+
|
115 |
+
except Exception as e:
|
116 |
+
return f"Error loading model {model_key}: {str(e)}"
|
117 |
+
|
118 |
+
def generate_text(self, model_key, prompt, max_length=100, temperature=0.7, top_p=0.9):
|
119 |
+
"""Generate text menggunakan model yang dipilih"""
|
120 |
+
try:
|
121 |
+
pipe = self.load_model(model_key)
|
122 |
+
if isinstance(pipe, str): # Error message
|
123 |
+
return pipe
|
124 |
+
|
125 |
+
config = self.model_configs[model_key]
|
126 |
+
|
127 |
+
if config["type"] == "text-generation":
|
128 |
+
result = pipe(
|
129 |
+
prompt,
|
130 |
+
max_length=max_length,
|
131 |
+
temperature=temperature,
|
132 |
+
top_p=top_p,
|
133 |
+
do_sample=True,
|
134 |
+
pad_token_id=pipe.tokenizer.eos_token_id
|
135 |
+
)
|
136 |
+
generated_text = result[0]['generated_text']
|
137 |
+
# Remove prompt dari output
|
138 |
+
if generated_text.startswith(prompt):
|
139 |
+
generated_text = generated_text[len(prompt):].strip()
|
140 |
+
return generated_text
|
141 |
+
|
142 |
+
elif config["type"] == "text-classification":
|
143 |
+
result = pipe(prompt)
|
144 |
+
return f"Label: {result[0]['label']}, Score: {result[0]['score']:.4f}"
|
145 |
+
|
146 |
+
elif config["type"] == "text2text-generation":
|
147 |
+
result = pipe(prompt, max_length=max_length)
|
148 |
+
return result[0]['generated_text']
|
149 |
+
|
150 |
+
except Exception as e:
|
151 |
+
return f"Error generating text: {str(e)}"
|
152 |
+
|
153 |
+
def get_model_info(self, model_key):
|
154 |
+
"""Get informasi model"""
|
155 |
+
config = self.model_configs[model_key]
|
156 |
+
return f"**{model_key}**\n\nType: {config['type']}\n\nDescription: {config['description']}"
|
157 |
+
|
158 |
+
# Initialize hub
|
159 |
+
hub = MultiModelHub()
|
160 |
+
|
161 |
+
def chat_interface(model_choice, user_input, max_length, temperature, top_p, history):
|
162 |
+
"""Main chat interface"""
|
163 |
+
if not user_input.strip():
|
164 |
+
return history, ""
|
165 |
+
|
166 |
+
# Generate response
|
167 |
+
response = hub.generate_text(
|
168 |
+
model_choice,
|
169 |
+
user_input,
|
170 |
+
max_length=int(max_length),
|
171 |
+
temperature=temperature,
|
172 |
+
top_p=top_p
|
173 |
+
)
|
174 |
+
|
175 |
+
# Update history
|
176 |
+
history.append([user_input, response])
|
177 |
+
|
178 |
+
return history, ""
|
179 |
+
|
180 |
+
def get_model_description(model_choice):
|
181 |
+
"""Update model description"""
|
182 |
+
return hub.get_model_info(model_choice)
|
183 |
+
|
184 |
+
# Gradio Interface
|
185 |
+
with gr.Blocks(title="Lyon28 Multi-Model Hub", theme=gr.themes.Soft()) as demo:
|
186 |
+
gr.Markdown(
|
187 |
+
"""
|
188 |
+
# π€ Lyon28 Multi-Model Hub
|
189 |
+
|
190 |
+
Deploy dan test semua 11 models Lyon28 dalam satu interface.
|
191 |
+
Pilih model, atur parameter, dan mulai chat!
|
192 |
+
"""
|
193 |
+
)
|
194 |
+
|
195 |
+
with gr.Row():
|
196 |
+
with gr.Column(scale=1):
|
197 |
+
# Model Selection
|
198 |
+
model_dropdown = gr.Dropdown(
|
199 |
+
choices=list(hub.model_configs.keys()),
|
200 |
+
value="GPT-2 Indonesia",
|
201 |
+
label="Select Model",
|
202 |
+
info="Choose which model to use"
|
203 |
+
)
|
204 |
+
|
205 |
+
# Model Info
|
206 |
+
model_info = gr.Markdown(
|
207 |
+
hub.get_model_info("GPT-2 Indonesia"),
|
208 |
+
label="Model Information"
|
209 |
+
)
|
210 |
+
|
211 |
+
# Parameters
|
212 |
+
gr.Markdown("### Generation Parameters")
|
213 |
+
max_length_slider = gr.Slider(
|
214 |
+
minimum=20,
|
215 |
+
maximum=500,
|
216 |
+
value=100,
|
217 |
+
step=10,
|
218 |
+
label="Max Length",
|
219 |
+
info="Maximum response length"
|
220 |
+
)
|
221 |
+
|
222 |
+
temperature_slider = gr.Slider(
|
223 |
+
minimum=0.1,
|
224 |
+
maximum=2.0,
|
225 |
+
value=0.7,
|
226 |
+
step=0.1,
|
227 |
+
label="Temperature",
|
228 |
+
info="Creativity level (higher = more creative)"
|
229 |
+
)
|
230 |
+
|
231 |
+
top_p_slider = gr.Slider(
|
232 |
+
minimum=0.1,
|
233 |
+
maximum=1.0,
|
234 |
+
value=0.9,
|
235 |
+
step=0.05,
|
236 |
+
label="Top-p",
|
237 |
+
info="Nucleus sampling parameter"
|
238 |
+
)
|
239 |
+
|
240 |
+
with gr.Column(scale=2):
|
241 |
+
# Chat Interface
|
242 |
+
chatbot = gr.Chatbot(
|
243 |
+
label="Chat with Model",
|
244 |
+
height=400,
|
245 |
+
show_label=True
|
246 |
+
)
|
247 |
+
|
248 |
+
user_input = gr.Textbox(
|
249 |
+
placeholder="Type your message here...",
|
250 |
+
label="Your Message",
|
251 |
+
lines=2
|
252 |
+
)
|
253 |
+
|
254 |
+
with gr.Row():
|
255 |
+
send_btn = gr.Button("Send", variant="primary")
|
256 |
+
clear_btn = gr.Button("Clear Chat", variant="secondary")
|
257 |
+
|
258 |
+
# Example Prompts
|
259 |
+
gr.Markdown("### π‘ Example Prompts")
|
260 |
+
example_prompts = gr.Examples(
|
261 |
+
examples=[
|
262 |
+
["Ceritakan tentang Indonesia"],
|
263 |
+
["What is artificial intelligence?"],
|
264 |
+
["Write a Python function to sort a list"],
|
265 |
+
["Explain quantum computing in simple terms"],
|
266 |
+
["Create a short story about robots"],
|
267 |
+
],
|
268 |
+
inputs=user_input,
|
269 |
+
label="Click to use example prompts"
|
270 |
+
)
|
271 |
+
|
272 |
+
# Event Handlers
|
273 |
+
model_dropdown.change(
|
274 |
+
fn=get_model_description,
|
275 |
+
inputs=[model_dropdown],
|
276 |
+
outputs=[model_info]
|
277 |
+
)
|
278 |
+
|
279 |
+
send_btn.click(
|
280 |
+
fn=chat_interface,
|
281 |
+
inputs=[model_dropdown, user_input, max_length_slider, temperature_slider, top_p_slider, chatbot],
|
282 |
+
outputs=[chatbot, user_input]
|
283 |
+
)
|
284 |
+
|
285 |
+
user_input.submit(
|
286 |
+
fn=chat_interface,
|
287 |
+
inputs=[model_dropdown, user_input, max_length_slider, temperature_slider, top_p_slider, chatbot],
|
288 |
+
outputs=[chatbot, user_input]
|
289 |
+
)
|
290 |
+
|
291 |
+
clear_btn.click(
|
292 |
+
fn=lambda: ([], ""),
|
293 |
+
outputs=[chatbot, user_input]
|
294 |
+
)
|
295 |
+
|
296 |
+
# Footer
|
297 |
+
with demo:
|
298 |
+
gr.Markdown(
|
299 |
+
"""
|
300 |
+
---
|
301 |
+
|
302 |
+
### π Features:
|
303 |
+
- **11 Models**: Akses semua model Lyon28 dalam satu tempat
|
304 |
+
- **Multiple Types**: Text generation, classification, dan text2text
|
305 |
+
- **Configurable**: Adjust temperature, top-p, dan max length
|
306 |
+
- **Memory Efficient**: Models loaded on-demand
|
307 |
+
- **API Ready**: Gradio auto-generates API endpoints
|
308 |
+
|
309 |
+
### π‘ API Usage:
|
310 |
+
```python
|
311 |
+
import requests
|
312 |
+
|
313 |
+
response = requests.post(
|
314 |
+
"https://your-space-name.hf.space/api/predict",
|
315 |
+
json={"data": ["GPT-2 Indonesia", "Hello world", 100, 0.7, 0.9, []]}
|
316 |
+
)
|
317 |
+
```
|
318 |
+
|
319 |
+
**Built by Lyon28** π₯
|
320 |
+
"""
|
321 |
+
)
|
322 |
+
|
323 |
+
if __name__ == "__main__":
|
324 |
+
demo.launch(
|
325 |
+
share=True,
|
326 |
+
server_name="0.0.0.0",
|
327 |
+
server_port=7860
|
328 |
+
)
|