import os import gradio as gr from llama_cpp import Llama from huggingface_hub import hf_hub_download, login #import os #login(os.getenv("HF_TOKEN")) my bad now its public model = Llama( model_path=hf_hub_download( repo_id=os.environ.get("REPO_ID", "bartowski/HuatuoGPT-o1-7B-v0.1-GGUF"), filename=os.environ.get("MODEL_FILE", "HuatuoGPT-o1-7B-v0.1-Q4_0.gguf"), ) ) DESCRIPTION = ''' # FreedomIntelligence/HuatuoGPT-o1-7B | Duplicate the space and set it to private for faster & personal inference for free. HuatuoGPT-o1 is a medical LLM designed for advanced medical reasoning. It generates a complex thought process, reflecting and refining its reasoning, before providing a final response. **To start a new chat**, click "clear" and start a new dialog. ''' LICENSE = """ --- Apache 2.0 License --- """ def user(message, history): return "", history + [{"role": "user", "content": message}] def generate_text(history, max_tokens=512, temperature=0.9, top_p=0.95): """Generate a response using the Llama model.""" messages = [{"role": item["role"], "content": item["content"]} for item in history[:-1]] message = history[-1]['content'] response = model.create_chat_completion( messages=messages + [{"role": "user", "content": message}], temperature=temperature, max_tokens=max_tokens, top_p=top_p, stream=True, ) history.append({"role": "assistant", "content": ""}) for streamed in response: delta = streamed["choices"][0].get("delta", {}) text_chunk = delta.get("content", "") history[-1]['content'] += text_chunk yield history with gr.Blocks() as demo: gr.Markdown(DESCRIPTION) chatbot = gr.Chatbot(type="messages") msg = gr.Textbox() clear = gr.Button("Clear") with gr.Accordion("Adjust Parameters", open=False): max_tokens = gr.Slider(minimum=512, maximum=4096, value=1024, step=1, label="Max Tokens") temperature = gr.Slider(minimum=0.1, maximum=1.5, value=0.9, step=0.1, label="Temperature") top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)") msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then( generate_text, [chatbot, max_tokens, temperature, top_p], chatbot ) clear.click(lambda: None, None, chatbot, queue=False) gr.Examples( examples=[ ["How many r's are in the word strawberry?"], ['How to stop a cough?'], ['How do I relieve feet pain?'], ], inputs=msg, label="Examples", ) gr.Markdown(LICENSE) if __name__ == "__main__": demo.launch()