Spaces:
Paused
Paused
File size: 1,282 Bytes
7971d45 4bad5f1 7971d45 14c1ab3 7971d45 7886f0d 4bad5f1 7886f0d 14c1ab3 7886f0d 4bad5f1 14c1ab3 65e1e1f 14c1ab3 65e1e1f 4bad5f1 7886f0d 4bad5f1 7886f0d 4bad5f1 7886f0d 65e1e1f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
import os
from huggingface_hub import login
from transformers import AutoModelForCausalLM, AutoTokenizer
import gradio as gr
import torch
# Autenticar usando el token almacenado como secreto
hf_token = os.getenv("HF_API_TOKEN")
login(hf_token)
# Cargar el modelo y el tokenizador
model_name = "DeepESP/gpt2-spanish"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name).to("cuda")
def chat_with_gpt2_spanish(input_text):
# Comprobar si la GPU está disponible
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {device}")
inputs = tokenizer(input_text, return_tensors="pt", truncation=True, max_length=512).to(device)
outputs = model.generate(
**inputs,
max_length=100,
num_beams=1,
temperature=0.7,
top_p=0.9,
no_repeat_ngram_size=2,
early_stopping=True
)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
return response
# Crear la interfaz con Gradio
iface = gr.Interface(
fn=chat_with_gpt2_spanish,
inputs="text",
outputs="text",
title="Chat con GPT-2 en Español",
description="Interfaz simple para comunicarte con el modelo GPT-2 en español."
)
iface.launch()
|