M4sterStudy commited on
Commit
1a5e155
·
verified ·
1 Parent(s): 3f0376d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +11 -12
app.py CHANGED
@@ -1,6 +1,6 @@
1
  import os
2
  from huggingface_hub import login
3
- from transformers import AutoTokenizer, AutoModelForSequenceClassification
4
  import gradio as gr
5
  import torch
6
 
@@ -9,25 +9,24 @@ hf_token = os.getenv("HF_API_TOKEN")
9
  login(hf_token)
10
 
11
  # Cargar el modelo y el tokenizador
12
- model_name = "bertin-project/bertin-roberta-base-spanish"
13
  tokenizer = AutoTokenizer.from_pretrained(model_name)
14
- model = AutoModelForSequenceClassification.from_pretrained(model_name)
15
 
16
- def classify_text(input_text):
17
  inputs = tokenizer(input_text, return_tensors="pt", truncation=True, max_length=512)
18
  with torch.no_grad():
19
- outputs = model(**inputs)
20
- logits = outputs.logits
21
- predicted_class_id = torch.argmax(logits, dim=-1).item()
22
- return predicted_class_id
23
 
24
  # Crear la interfaz con Gradio
25
  iface = gr.Interface(
26
- fn=classify_text,
27
  inputs="text",
28
  outputs="text",
29
- title="Clasificador en Español con BERTin",
30
- description="Interfaz para clasificar texto en español usando el modelo BERTin RoBERTa base."
31
  )
32
 
33
- iface.launch()
 
1
  import os
2
  from huggingface_hub import login
3
+ from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
4
  import gradio as gr
5
  import torch
6
 
 
9
  login(hf_token)
10
 
11
  # Cargar el modelo y el tokenizador
12
+ model_name = "mrm8488/t5-base-finetuned-spanish"
13
  tokenizer = AutoTokenizer.from_pretrained(model_name)
14
+ model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
15
 
16
+ def generate_text(input_text):
17
  inputs = tokenizer(input_text, return_tensors="pt", truncation=True, max_length=512)
18
  with torch.no_grad():
19
+ outputs = model.generate(**inputs, max_length=200, num_beams=4, early_stopping=True)
20
+ generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
21
+ return generated_text
 
22
 
23
  # Crear la interfaz con Gradio
24
  iface = gr.Interface(
25
+ fn=generate_text,
26
  inputs="text",
27
  outputs="text",
28
+ title="Generador de Texto en Español",
29
+ description="Genera texto en español utilizando un modelo de lenguaje preentrenado."
30
  )
31
 
32
+ iface.launch()