Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
import os
|
2 |
from huggingface_hub import login
|
3 |
-
from transformers import AutoTokenizer,
|
4 |
import gradio as gr
|
5 |
import torch
|
6 |
|
@@ -9,25 +9,24 @@ hf_token = os.getenv("HF_API_TOKEN")
|
|
9 |
login(hf_token)
|
10 |
|
11 |
# Cargar el modelo y el tokenizador
|
12 |
-
model_name = "
|
13 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
14 |
-
model =
|
15 |
|
16 |
-
def
|
17 |
inputs = tokenizer(input_text, return_tensors="pt", truncation=True, max_length=512)
|
18 |
with torch.no_grad():
|
19 |
-
outputs = model(**inputs)
|
20 |
-
|
21 |
-
|
22 |
-
return predicted_class_id
|
23 |
|
24 |
# Crear la interfaz con Gradio
|
25 |
iface = gr.Interface(
|
26 |
-
fn=
|
27 |
inputs="text",
|
28 |
outputs="text",
|
29 |
-
title="
|
30 |
-
description="
|
31 |
)
|
32 |
|
33 |
-
iface.launch()
|
|
|
1 |
import os
|
2 |
from huggingface_hub import login
|
3 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
4 |
import gradio as gr
|
5 |
import torch
|
6 |
|
|
|
9 |
login(hf_token)
|
10 |
|
11 |
# Cargar el modelo y el tokenizador
|
12 |
+
model_name = "mrm8488/t5-base-finetuned-spanish"
|
13 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
14 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
15 |
|
16 |
+
def generate_text(input_text):
|
17 |
inputs = tokenizer(input_text, return_tensors="pt", truncation=True, max_length=512)
|
18 |
with torch.no_grad():
|
19 |
+
outputs = model.generate(**inputs, max_length=200, num_beams=4, early_stopping=True)
|
20 |
+
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
21 |
+
return generated_text
|
|
|
22 |
|
23 |
# Crear la interfaz con Gradio
|
24 |
iface = gr.Interface(
|
25 |
+
fn=generate_text,
|
26 |
inputs="text",
|
27 |
outputs="text",
|
28 |
+
title="Generador de Texto en Español",
|
29 |
+
description="Genera texto en español utilizando un modelo de lenguaje preentrenado."
|
30 |
)
|
31 |
|
32 |
+
iface.launch()
|