Spaces:
Runtime error
Runtime error
File size: 9,392 Bytes
2a33798 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
import argparse
import envs
import deciders
from matplotlib import animation
import matplotlib.pyplot as plt
import os
import numpy as np
import torch as th
from envs.translator import InitSummarizer, CurrSummarizer, FutureSummarizer, Translator
from tianshou.data import Collector, VectorReplayBuffer, ReplayBuffer
from tianshou.policy import PPOPolicy
from RL_based.utils import (
Net_GRU_Bert_tianshou,
Net_Bert_CLS_tianshou,
Net_Bert_CNN_tianshou,
Net_GRU_nn_emb_tianshou,
)
from tianshou.utils.net.common import ActorCritic
from tianshou.utils.net.discrete import Actor, Critic
import gym
import json
ENV_CLASS = {'classic_control': ['CartPole', 'Acrobot', 'MountainCar'],
'box2d': ['LunarLander'],
'toy_text': ['Blackjack', 'Taxi', 'CliffWalking', 'FrozenLake']}
def get_env_class(env_name):
for key, value in ENV_CLASS.items():
if env_name in value:
return key
return None
def get_fewshot_example_path(env, decider):
assert decider in ['random_actor', 'expert'], "decider must be random_actor or expert"
prompt_level = 2 if decider == 'random_actor' else 4
fewshot_example_path = os.path.join(
'envs', get_env_class(env.spec.name), 'few_shot_examples',
''.join([env.spec.name.lower(), '_l', str(prompt_level), '.json']))
return fewshot_example_path
# https://colab.research.google.com/drive/1DdWsGi10232orUv-reY4wsTmT0VMoHaX?usp=sharing#scrollTo=4OfVmDKk7XvG
# LLMs bias on 0 so make the actions greater than 1 instead.
def gen_expert_examples(environment, policy, file_path, max_episode_len=120, n_episodes=1):
replaybuffer = ReplayBuffer(size=1000)
test_collector_1 = Collector(policy, environment, replaybuffer)
test_collector_1.reset_env()
game_description = environment.get_game_description()
goal_description = environment.get_goal_description()
action_description = environment.get_action_description()
policy.eval()
data_lst = []
for _ in range(n_episodes):
test_collector_1.reset_buffer()
result = test_collector_1.collect(n_episode=1)
sample_result = replaybuffer.sample(0)[0]
round = 0
utility = 0
data = []
for transition in sample_result:
round += 1
if round > max_episode_len:
break
question = f"{transition.obs} \n {goal_description} \n {action_description} "
reward = transition.rew
utility += reward
answer = f"The final answer is: {transition.act + 1}"
data.append(
{
"observation": transition.obs,
"goal_description": goal_description,
"action_description": action_description,
"game_description": game_description,
"action": str(transition.act + 1),
"question": question,
"answer": answer,
"reward": reward,
"cum_reward": utility,
}
)
print(f"Now it is round {round}")
data_lst.append(data)
# Return the final reward
with open(file_path, "w") as outfile:
json.dump(data_lst, outfile)
return utility
def gen_examples(environment, decider, file_path, max_episode_len=200, n_episodes=1):
game_description = environment.get_game_description()
goal_description = environment.get_goal_description()
action_description = environment.get_action_description()
frames = []
utilities = []
data_lst = []
for _ in range(n_episodes):
# Reset the environment
round = 0
state_description, env_info = environment.reset()
utility = 0
data = []
for _ in range(max_episode_len):
# Keep asking ChatGPT for an action until it provides a valid one
asking_round = 0
action, prompt, answer, _, _, _ = decider.act(
state_description,
action_description,
env_info,
game_description,
goal_description,
)
# Perform the action in the environment
state_description, reward, terminated, truncated, env_info = environment.step_llm(
action
)
question = f"{state_description} \n {goal_description} \n {action_description} "
utility += reward
answer += f"The final answer is: {action}"
data.append(
{
"observation": state_description,
"goal_description": goal_description,
"action_description": action_description,
"game_description": game_description,
"action": action,
"question": question,
"answer": answer,
"reward": reward,
"cum_reward": utility,
}
)
print(f"Now it is round {round}")
round += 1
# If the game is over, break the loop
if terminated or truncated:
print(f"Terminated!")
break
utilities.append(utility)
data_lst.append(data)
# Return the final reward
with open(file_path, "w") as outfile:
json.dump(data_lst, outfile)
return utility
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Generate few shots examples of a gym environment."
)
parser.add_argument(
"--init_summarizer",
type=str,
required=True,
help="The name of the init summarizer to use.",
)
parser.add_argument(
"--curr_summarizer",
type=str,
required=True,
help="The name of the curr summarizer to use.",
)
parser.add_argument(
"--env",
type=str,
default="base_env",
help="The name of the gym environment to use.",
)
parser.add_argument(
"--decider",
type=str,
default="naive_actor",
help="The actor used to select action",
)
parser.add_argument(
"--env_name",
type=str,
default="CartPole-v0",
help="The name of the gym environment to use.",
)
parser.add_argument(
"--max_episode_len",
type=int,
default=200,
help="The maximum number of steps in an episode.",
)
parser.add_argument(
"--num_episodes",
type=int,
default=1,
help="The number of episodes to collect data.",
)
parser.add_argument(
"--max_length",
type=int,
default=128,
help="The token length of the observation",
)
parser.add_argument(
"--trans_model_name",
type=str,
default="/home/ubuntu/LLM-Decider-Bench/RL_based/transformer_offline_distilbert",
help="The name of the pretrained transformer to use.",
)
parser.add_argument(
"--policy_path",
type=str,
default=None,
help="The path to the policy to be evaluated",
)
parser.add_argument(
"--n_episodes",
type=int,
default=2,
help="The number of episodes to collect data (for env where episode is too short).",
)
args = parser.parse_args()
# Get the specified translator, environment, and ChatGPT model
device = "cuda" if th.cuda.is_available() else "cpu"
env_class = envs.REGISTRY[args.env]
init_summarizer = InitSummarizer(envs.REGISTRY[args.init_summarizer])
curr_summarizer = CurrSummarizer(envs.REGISTRY[args.curr_summarizer])
translator = Translator(init_summarizer, curr_summarizer, None, env=None)
environment = env_class(gym.make(args.env_name, render_mode=None), translator)
fewshot_example_path = get_fewshot_example_path(environment, args.decider)
if args.decider == "expert":
net = Net_GRU_nn_emb_tianshou(
hidden_sizes=[256, 128],
device=device,
max_length=args.max_length,
trans_model_name=args.trans_model_name,
)
actor = Actor(net, environment.action_space.n, device=device).to(device)
critic = Critic(net, device=device).to(device)
actor_critic = ActorCritic(actor, critic)
optim = th.optim.Adam(actor_critic.parameters(), lr=0.0003)
# PPO policy
dist = th.distributions.Categorical
policy = PPOPolicy(
actor,
critic,
optim,
dist,
action_space=environment.action_space,
deterministic_eval=True,
)
policy.load_state_dict(th.load(args.policy_path))
utility = gen_expert_examples(
environment, policy, fewshot_example_path,
max_episode_len=args.max_episode_len, n_episodes=args.n_episodes
)
else:
decider_class = deciders.REGISTRY[args.decider]
decider = decider_class(environment.env.action_space)
# Evaluate the translator
utility = gen_examples(
environment, decider, fewshot_example_path,
max_episode_len=args.max_episode_len,
n_episodes=args.n_episodes
)
print(f"(Avg.) Cummulative reward: {utility}")
|