File size: 1,969 Bytes
2a33798
 
4e5e176
2a33798
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e5e176
 
65ee2b8
4e5e176
65ee2b8
2a33798
 
 
 
 
 
 
 
 
 
 
4e5e176
2a33798
 
 
 
 
 
 
 
65ee2b8
 
 
 
 
 
 
 
2a33798
65ee2b8
4e5e176
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import os
import sys
import openai # 0.27.8
from tenacity import (
    retry,
    stop_after_attempt, # type: ignore
    wait_random_exponential, # type: ignore
)

from typing import Optional, List
if sys.version_info >= (3, 8):
    from typing import Literal
else:
    from typing_extensions import Literal


Model = Literal["gpt-4", "gpt-35-turbo", "text-davinci-003"]

from .gpt import gpt
gpt().__init__()

import timeout_decorator
@timeout_decorator.timeout(30)
def run_chain(chain, *args, **kwargs):
    return chain.run(*args, **kwargs)

# @retry(wait=wait_random_exponential(min=1, max=60), stop=stop_after_attempt(6))
def get_completion(prompt: str, api_type: str = "azure", engine: str = "gpt-35-turbo", temperature: float = 0.0, max_tokens: int = 256, stop_strs: Optional[List[str]] = None) -> str:
    response = openai.Completion.create(
                model=engine,
                engine=engine,
                prompt=prompt,
                temperature=temperature,
                max_tokens=max_tokens,
                top_p=1,
                frequency_penalty=0.0,
                presence_penalty=0.0,
                stop=stop_strs,
                # request_timeout = 1
            )
    return response.choices[0].text

# @retry(wait=wait_random_exponential(min=1, max=60), stop=stop_after_attempt(6))
def get_chat(prompt: str, model: str = "gpt-35-turbo", engine: str = "gpt-35-turbo", temperature: float = 0.0, max_tokens: int = 256, stop_strs: Optional[List[str]] = None, is_batched: bool = False) -> str:
    assert model != "text-davinci-003"
    messages = [
        {
            "role": "user",
            "content": prompt
        }
    ]
    response = openai.ChatCompletion.create(
        model=model,
        engine=engine,
        messages=messages,
        max_tokens=max_tokens,
        stop=stop_strs,
        temperature=temperature,
        # request_timeout = 1
    )
    return response.choices[0]["message"]["content"]