Spaces:
Runtime error
Runtime error
File size: 12,125 Bytes
2a33798 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 |
import argparse
import sys
sys.path.insert(0, sys.path[0]+"/../")
import prompts as task_prompts
import envs
import os
from envs.translator import InitSummarizer, CurrSummarizer, FutureSummarizer, Translator
import gym
from torch.optim.lr_scheduler import LambdaLR
import torch
from tianshou.data import Collector, VectorReplayBuffer, ReplayBuffer
from tianshou.env import DummyVectorEnv, SubprocVectorEnv
from tianshou.policy import PPOPolicy, ICMPolicy
from tianshou.trainer import onpolicy_trainer
from tianshou.utils.net.common import ActorCritic
from tianshou.utils.net.discrete import Actor, Critic, IntrinsicCuriosityModule
from RL_based.utils import Net_GRU_Bert_tianshou, Net_Bert_CLS_tianshou, Net_Bert_CNN_tianshou, Net_GRU_nn_emb_tianshou
from tianshou.utils import WandbLogger
from torch.utils.tensorboard import SummaryWriter
from tianshou.trainer.utils import test_episode
import warnings
warnings.filterwarnings('ignore')
class MaxStepLimitWrapper(gym.Wrapper):
def __init__(self, env, max_steps=200):
super(MaxStepLimitWrapper, self).__init__(env)
self.max_steps = max_steps
self.current_step = 0
def reset(self, **kwargs):
self.current_step = 0
return self.env.reset(**kwargs)
def step(self, action):
observation, reward, terminated, truncated, info = self.env.step(action)
self.current_step += 1
if self.current_step >= self.max_steps:
terminated = True
info['episode_step_limit'] = self.max_steps
return observation, reward, terminated, truncated, info
class SimpleTextWrapper(gym.Wrapper):
def __init__(self, env):
super(SimpleTextWrapper, self).__init__(env)
self.env = env
def reset(self, **kwargs):
observation, _ = self.env.reset(**kwargs)
return str(observation), {}
def step(self, action):
observation, reward, terminated, truncated, info = self.env.step(action)
return str(observation), reward, terminated, truncated, info
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Evaluate a translator in a gym environment with a ChatGPT model.')
parser.add_argument('--init_summarizer', type=str, required=True, help='The name of the init summarizer to use.')
parser.add_argument('--curr_summarizer', type=str, required=True, help='The name of the curr summarizer to use.')
parser.add_argument('--future_summarizer', type=str, help='The name of the future summarizer to use.')
parser.add_argument('--env', type=str, default='base_env', help='The name of the gym environment to use.')
parser.add_argument('--env_name', type=str, default='CartPole-v1', help='The name of the gym environment to use.')
parser.add_argument('--decider', type=str, default="naive_actor", help='The actor used to select action')
parser.add_argument('--render', type=str, default="rgb_array", help='The render mode')
parser.add_argument('--future_horizon', type=int, help='The horizon of looking to future')
parser.add_argument(
"--prompt_level",
type=int,
default=1,
help="The level of prompts",
)
parser.add_argument(
"--past_horizon", type=int, help="The horizon of looking back"
)
parser.add_argument(
"--max_episode_len", type=int, default=200, help="The max length of an episode"
)
### for RL training
parser.add_argument('--max_length', type=int, default=128, help='The token length of the observation')
# trans_model_name
parser.add_argument('--trans_model_name', type=str, default='bert-base-uncased', help='The name of the pretrained transformer to use.')
parser.add_argument('--model_name', type=str, default='bert-embedding', help='The name of the model to use.')
parser.add_argument('--vector_env', type=str, default='dummy', help='The name of the vector env to use.')
parser.add_argument('--eval', action='store_true', default=False, help='Whether to only eval the model')
parser.add_argument('--policy-path', type=str, default=None, help='The path to the policy to be evaluated')
parser.add_argument('--collect_one_episode', action='store_true', default=False, help='Whether to only collect one episode')
parser.add_argument('--lr', type=float, default=0.0003, help='The learning rate of the model')
parser.add_argument('--step_per_epoch', type=int, default=10000, help='The number of steps per epoch')
parser.add_argument('--step_per_collect', type=int, default=2000, help='The number of steps per collect')
parser.add_argument('--lr_decay', action='store_true', default=False, help='Whether to decay the learning rate')
parser.add_argument('--epoch', type=int, default=400, help='The number of epochs to train')
parser.add_argument('--resume_path', type=str, default=None, help='The path to the policy to be resumed')
parser.add_argument('--taxi_specific_env', action='store_true', default=False, help='Whether to use taxi specific env')
args = parser.parse_args()
args_dict = vars(args)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
# Get the specified translator, environment, and ChatGPT model
env_class = envs.REGISTRY[args.env]
init_summarizer = InitSummarizer(envs.REGISTRY[args.init_summarizer])
curr_summarizer = CurrSummarizer(envs.REGISTRY[args.curr_summarizer])
if args.future_summarizer:
future_summarizer = FutureSummarizer(
envs.REGISTRY[args.future_summarizer],
envs.REGISTRY["cart_policies"],
future_horizon=args.future_horizon,
)
else:
future_summarizer = None
wandb_log_config = {
"env": args.env_name,
"init_summarizer": args.init_summarizer,
"curr_summarizer": args.curr_summarizer,
"future_summarizer": args.future_summarizer,
}
wandb_log_config.update(args_dict)
if not args.eval:
logger = WandbLogger(
project="LLM-decider-bench-RL",
entity="llm-bench-team",
config=wandb_log_config,
)
random_name = logger.wandb_run.name
log_path = os.path.join('/home/ubuntu/LLM-Decider-Bench/RL_based/results', args.env_name, random_name)
writer = SummaryWriter(log_dir=log_path)
writer.add_text("args", str(args))
logger.load(writer)
def save_best_fn(policy):
torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth'))
sampling_env = envs.REGISTRY["sampling_wrapper"](gym.make(args.env_name))
if args.prompt_level == 5:
prompts_class = task_prompts.REGISTRY[(args.env_name,args.decider)]()
else:
prompts_class = task_prompts.REGISTRY[(args.decider)]()
translator = Translator(
init_summarizer, curr_summarizer, future_summarizer, env=sampling_env
)
if args.taxi_specific_env:
environment = gym.make(args.env_name, render_mode=args.render)
else:
environment = env_class(
gym.make(args.env_name, render_mode=args.render), translator
)
# Set the translation level
translate_level = 1
if args.past_horizon is None and args.future_horizon is None:
translate_level = 1
if args.past_horizon and args.future_horizon is None:
raise NotImplementedError
# translate_level = 2
if args.past_horizon is None and args.future_horizon:
raise NotImplementedError
# translate_level = 3
if args.past_horizon and args.future_horizon:
raise NotImplementedError
# translate_level = 3.5
if args.vector_env == 'dummy':
ThisEnv = DummyVectorEnv
elif args.vector_env == 'subproc':
ThisEnv = SubprocVectorEnv
def make_env():
if args.taxi_specific_env:
env = MaxStepLimitWrapper(SimpleTextWrapper(gym.make(args.env_name, render_mode=args.render)), max_steps=200)
env._max_episode_steps = args.max_episode_len
else:
env = env_class(MaxStepLimitWrapper(gym.make(args.env_name, render_mode=args.render), max_steps=200), translator)
env._max_episode_steps = args.max_episode_len
return env
train_envs = ThisEnv([make_env for _ in range(20)])
test_envs = ThisEnv([make_env for _ in range(10)])
# model & optimizer
def get_net():
if args.model_name == "bert-embedding":
net = Net_GRU_Bert_tianshou(state_shape=environment.observation_space.shape, hidden_sizes=[64, 64], device=device, max_length=args.max_length, trans_model_name=args.trans_model_name)
elif args.model_name == "bert-CLS-embedding":
net = Net_Bert_CLS_tianshou(state_shape=environment.observation_space.shape, hidden_sizes=[256, 128], device=device, max_length=args.max_length, trans_model_name=args.trans_model_name)
elif args.model_name == "bert-CNN-embedding":
net = Net_Bert_CNN_tianshou(state_shape=environment.observation_space.shape, hidden_sizes=[256, 128], device=device, max_length=args.max_length, trans_model_name=args.trans_model_name)
elif args.model_name == "nn_embedding":
net = Net_GRU_nn_emb_tianshou(hidden_sizes=[256, 128], device=device, max_length=args.max_length, trans_model_name=args.trans_model_name)
return net
net = get_net()
actor = Actor(net, environment.action_space.n, device=device).to(device)
critic = Critic(net, device=device).to(device)
actor_critic = ActorCritic(actor, critic)
optim = torch.optim.Adam(actor_critic.parameters(), lr=args.lr)
# PPO policy
dist = torch.distributions.Categorical
lr_scheduler = None
if args.lr_decay:
max_update_num = args.step_per_epoch // args.step_per_collect * args.epoch
lr_scheduler = LambdaLR(optim, lr_lambda=lambda epoch: 1 - epoch / max_update_num)
policy = PPOPolicy(actor, critic, optim, dist, action_space=environment.action_space, lr_scheduler=lr_scheduler).to(device)
# collector
train_collector = Collector(policy, train_envs, VectorReplayBuffer(20000, len(train_envs)), exploration_noise=True)
test_collector = Collector(policy, test_envs, exploration_noise=True)
if not args.eval:
# trainer
# test train_collector and start filling replay buffer
if args.resume_path:
policy.load_state_dict(torch.load(args.resume_path, map_location='cuda'))
print("Loaded agent from: ", args.resume_path)
train_collector.collect(256 * 20)
result = onpolicy_trainer(
policy,
train_collector,
test_collector,
max_epoch=args.epoch,
step_per_epoch=50000, # the number of transitions collected per epoch
repeat_per_collect=4,
episode_per_test=10,
batch_size=256,
logger=logger,
step_per_collect=1000, # the number of transitions the collector would collect before the network update
save_best_fn=save_best_fn,
# stop_fn=lambda mean_reward: mean_reward >= environment.spec.reward_threshold,
)
print(result)
else:
assert args.policy_path is not None
policy.load_state_dict(torch.load(args.policy_path))
test_collector = Collector(policy, test_envs)
result = test_episode(policy, test_collector, None, None, n_episode=10)
print(result)
if args.collect_one_episode:
replaybuffer = ReplayBuffer(size=1000)
test_collector_1 = Collector(policy, environment, replaybuffer)
test_collector_1.reset_env()
test_collector_1.reset_buffer()
policy.eval()
result = test_collector_1.collect(n_episode=1)
print('sample results', f"/home/ubuntu/LLM-Decider-Bench/RL_based/checkpoints/{args.env_name}/output.txt")
sample_result = replaybuffer.sample(0)
f = open(f"/home/ubuntu/LLM-Decider-Bench/RL_based/checkpoints/{args.env_name}/output.txt", "w")
print(sample_result, file=f)
f.close() |