File size: 12,579 Bytes
eaa7556
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
import envs
import deciders
import distillers
import prompts as task_prompts
import datetime
import time
from envs.translator import InitSummarizer, CurrSummarizer, FutureSummarizer, Translator
import gym
import pandas as pd
import random
import datetime
from loguru import logger
from argparse import Namespace
import gradio as gr


def set_seed(seed):
    random.seed(seed)         

def main_progress(env_name, decider, prompt_level, num_trails, seed):
    init_summarizer = env_name.split("-")[0] + '_init_translator'
    curr_summarizer = env_name.split("-")[0] + '_basic_translator'
    args = Namespace(
        env_name=env_name,
        init_summarizer=init_summarizer,
        curr_summarizer=curr_summarizer,
        decider=decider,
        prompt_level=prompt_level,
        num_trails=num_trails,
        seed=seed,
        future_summarizer=None,
        env="base_env",
        gpt_version="gpt-3.5-turbo",
        render="rgb_array",
        max_episode_len=200,
        max_query_tokens=5000,
        max_tokens=2000,
        distiller="traj_distiller",
        prompt_path=None,
        use_short_mem=1,
        short_mem_num=10,
        is_only_local_obs=1,
        api_type="azure",
    )

    if args.api_type != "azure" and args.api_type != "openai":
        raise ValueError(f"The {args.api_type} is not supported, please use 'azure' or 'openai' !")
    
    # Please note when using "azure", the model name is gpt-35-turbo while using "openai", the model name is "gpt-3.5-turbo"
    if args.api_type == "azure":
        if args.gpt_version == "gpt-3.5-turbo":
            args.gpt_version = 'gpt-35-turbo'
    elif args.api_type == "openai":
        if args.gpt_version == "gpt-35-turbo":
            args.gpt_version = 'gpt-3.5-turbo'

    # Get the specified translator, environment, and ChatGPT model
    env_class = envs.REGISTRY[args.env]
    init_summarizer = InitSummarizer(envs.REGISTRY[args.init_summarizer], args)
    curr_summarizer = CurrSummarizer(envs.REGISTRY[args.curr_summarizer])
    
    if args.future_summarizer:
        future_summarizer = FutureSummarizer(
            envs.REGISTRY[args.future_summarizer],
            envs.REGISTRY["cart_policies"],
            future_horizon=args.future_horizon,
        )
    else:
        future_summarizer = None

    decider_class = deciders.REGISTRY[args.decider]
    distiller_class = distillers.REGISTRY[args.distiller]
    sampling_env = envs.REGISTRY["sampling_wrapper"](gym.make(args.env_name))
    if args.prompt_level == 5:
        prompts_class = task_prompts.REGISTRY[(args.env_name,args.decider)]()
    else:
        prompts_class = task_prompts.REGISTRY[(args.decider)]()
    translator = Translator(
        init_summarizer, curr_summarizer, future_summarizer, env=sampling_env
    )
    environment = env_class(
        gym.make(args.env_name, render_mode=args.render), translator
    )

    logfile = (
        f"llm.log/output-{args.env_name}-{args.decider}-{args.gpt_version}-l{args.prompt_level}"
        f"-{datetime.datetime.now().timestamp()}.log"
    )

    logfile_reflexion = (
        f"llm.log/memory-{args.env_name}-{args.decider}-{args.gpt_version}-l{args.prompt_level}"
        f"-{datetime.datetime.now().timestamp()}.log"
    )
    my_distiller = distiller_class(logfile=logfile_reflexion,args=args)

    args.game_description = environment.game_description
    args.goal_description = environment.goal_description
    args.action_description = environment.action_description
    args.action_desc_dict = environment.action_desc_dict
    args.reward_desc_dict = environment.reward_desc_dict

    logger.add(logfile, colorize=True, enqueue=True, filter=lambda x: '[Reflexion Memory]' not in x['message'])

    decider = decider_class(environment.env.action_space, args, prompts_class, my_distiller, temperature=0.0, logger=logger, max_tokens=args.max_tokens)
    
    # Evaluate the translator
    utilities = []
    df = pd.read_csv('record_reflexion.csv', sep=',')
    filtered_df = df[(df['env'] == args.env_name) & (df['decider'] == 'expert') & (df['level'] == 1)]
    expert_score = filtered_df['avg_score'].item()
    seeds = [i for i in range(1000)]
    # prompt_file = "prompt.txt"
    # f = open(prompt_file,"w+")
    num_trails = args.num_trails
    if not "Blackjack" in args.env_name:
        curriculums = 1
    else:
        curriculums = 20
    for curriculum in range(curriculums):
        for trail in range(num_trails): 
            if "Blackjack" in args.env_name:
                seed = seeds[curriculum*curriculums + num_trails - trail - 1]
            else:
                seed = args.seed

            # single run
            # Reset the environment
            if not "Blackjack" in args.env_name:
                set_seed(args.seed)
                seed = args.seed
                # Reset the environment
                state_description, env_info = environment.reset(seed=args.seed)
            else:
                set_seed(seed)
                # Reset the environment
                state_description, env_info = environment.reset(seed=seed)
            game_description = environment.get_game_description()
            goal_description = environment.get_goal_description()
            action_description = environment.get_action_description()

            # Initialize the statistics
            frames = []
            utility = 0
            current_total_tokens = 0
            current_total_cost = 0
            start_time = datetime.datetime.now()
            # Run the game for a maximum number of steps
            for round in range(args.max_episode_len):
                # Keep asking ChatGPT for an action until it provides a valid one
                error_flag = True
                retry_num = 1
                for error_i in range(retry_num):
                    try:
                        action, prompt, response, tokens, cost = decider.act(
                            state_description,
                            action_description,
                            env_info,
                            game_description,
                            goal_description,
                            logfile
                        )

                        state_description, reward, termination, truncation, env_info = environment.step_llm(
                            action
                        )
                        if "Cliff" in args.env_name or "Frozen" in args.env_name:
                            decider.env_history.add('reward', env_info['potential_state'] + environment.reward_desc_dict[reward])
                        else:
                            decider.env_history.add('reward', f"The player get rewards {reward}.")
                            
                        utility += reward

                        # Update the statistics
                        current_total_tokens += tokens
                        current_total_cost += cost
                        error_flag = False
                        break
                    except Exception as e:
                        print(e)
                        if error_i < retry_num-1:
                            if "Cliff" in args.env_name or "Frozen" in args.env_name:
                                decider.env_history.remove_invalid_state()
                            decider.env_history.remove_invalid_state()
                        if logger:
                            logger.debug(f"Error: {e}, Retry! ({error_i+1}/{retry_num})")
                        continue
                if error_flag:
                    action = decider.default_action
                    state_description, reward, termination, truncation, env_info = environment.step_llm(
                            action
                        )

                    decider.env_history.add('action', decider.default_action)

                    if "Cliff" in args.env_name or "Frozen" in args.env_name:
                        # decider.env_history.add('reward', reward)
                        decider.env_history.add('reward', env_info['potential_state'] + environment.reward_desc_dict[reward])
                    utility += reward

                    
                    logger.info(f"Seed: {seed}")
                    logger.info(f'The optimal action is: {decider.default_action}.')
                    logger.info(f"Now it is round {round}.")
                else:
                    current_total_tokens += tokens
                    current_total_cost += cost
                    logger.info(f"Seed: {seed}")
                    logger.info(f"current_total_tokens: {current_total_tokens}")
                    logger.info(f"current_total_cost: {current_total_cost}")
                    logger.info(f"Now it is round {round}.")

                # return results
                yield environment.render(), state_description, prompt, response, action

                if termination or truncation:
                    if logger:
                        logger.info(f"Terminated!")
                    break
                time.sleep(10)
            decider.env_history.add(
                'terminate_state', environment.get_terminate_state(round+1, args.max_episode_len))
            decider.env_history.add("cummulative_reward", str(utility))
            # Record the final reward
            if logger:
                logger.info(f"Cummulative reward: {utility}.")
                end_time = datetime.datetime.now()
                time_diff = end_time - start_time
                logger.info(f"Time consumer: {time_diff.total_seconds()} s")
            
            utilities.append(utility)
            # TODO: set env sucess utility threshold
            if trail < num_trails -1:
                if args.decider in ['reflexion']:
                    if utility < expert_score: 
                        decider.update_mem() 
                else:
                    decider.update_mem() 
        decider.clear_mem()
    return utilities

# def pause():
#     for i in range(31415926):
#         time.sleep(0.1)
#         yield i            

if __name__ == "__main__":
    custom_css = """
        #render {
            flex-grow: 1;
        }
        #input_text .tabs {
            display: flex;
            flex-direction: column;
            flex-grow: 1;
        }
        #input_text .tabitem[style="display: block;"] {
            flex-grow: 1;
            display: flex !important;
        }
        #input_text .gap {
            flex-grow: 1;
        }
        #input_text .form {
            flex-grow: 1 !important;
        }
        #input_text .form > :last-child{
            flex-grow: 1;
        }
    """

    with gr.Blocks(theme=gr.themes.Monochrome(), css=custom_css) as demo:
        with gr.Row():
            env_name = gr.Dropdown(
                ["RepresentedBoxing-v0", 
                 "RepresentedPong-v0", 
                 "RepresentedMsPacman-v0", 
                 "RepresentedMontezumaRevenge-v0"], 
                label="Environment Name")
            decider = gr.Dropdown(
                ["naive_actor", 
                 "cot_actor", 
                 "spp_actor", 
                 "reflexion_actor"], 
                 label="Decider")
            prompt_level = gr.Dropdown([1, 2, 3, 4, 5], label="Prompt Level")
        with gr.Row():
            num_trails = gr.Slider(1, 100, 1, label="Number of Trails", scale=2)
            seed = gr.Slider(1, 1000, 1, label="Seed", scale=2)
            run = gr.Button("Run", scale=1)
            # pause_ = gr.Button("Pause")
            # resume = gr.Button("Resume")
            stop = gr.Button("Stop", scale=1)
        with gr.Row():
            with gr.Column():
                render = gr.Image(label="render", elem_id="render")
            with gr.Column(elem_id="input_text"):
                state = gr.Textbox(label="translated state")
                prompt = gr.Textbox(label="prompt", max_lines=100)
        with gr.Row():
            response = gr.Textbox(label="response")
            action = gr.Textbox(label="parsed action")
        run_event = run.click(
            fn=main_progress, 
            inputs=[env_name, decider, prompt_level, num_trails, seed], 
            outputs=[render, state, prompt, response, action])
        stop.click(fn=None, inputs=None, outputs=None, cancels=[run_event])
        # pause_event = pause_.click(fn=pause, inputs=None, outputs=None)
        # resume.click(fn=None, inputs=None, outputs=None, cancels=[pause_event])

    demo.launch(server_name="0.0.0.0", server_port=7860)