Spaces:
Runtime error
Runtime error
Last commit not found
import os | |
import sys | |
import openai # 0.27.8 | |
from tenacity import ( | |
retry, | |
stop_after_attempt, # type: ignore | |
wait_random_exponential, # type: ignore | |
) | |
from typing import Optional, List | |
if sys.version_info >= (3, 8): | |
from typing import Literal | |
else: | |
from typing_extensions import Literal | |
Model = Literal["gpt-4", "gpt-35-turbo", "text-davinci-003"] | |
# from .gpt import gpt | |
# gpt().__init__() | |
# import timeout_decorator | |
# @timeout_decorator.timeout(30) | |
# def run_chain(chain, *args, **kwargs): | |
# return chain.run(*args, **kwargs) | |
import concurrent.futures | |
def timeout_decorator(timeout): | |
def decorator(function): | |
def wrapper(*args, **kwargs): | |
with concurrent.futures.ThreadPoolExecutor(max_workers=1) as executor: | |
future = executor.submit(function, *args, **kwargs) | |
try: | |
return future.result(timeout) | |
except concurrent.futures.TimeoutError: | |
raise RuntimeError( | |
f"Function '{function.__name__}' timed out after {timeout} seconds" | |
) | |
except Exception as e: | |
raise e | |
return wrapper | |
return decorator | |
def run_chain(chain, *args, **kwargs): | |
return chain.run(*args, **kwargs) | |
# @retry(wait=wait_random_exponential(min=1, max=60), stop=stop_after_attempt(6)) | |
def get_completion(prompt: str, api_type: str = "azure", engine: str = "gpt-35-turbo", temperature: float = 0.0, max_tokens: int = 256, stop_strs: Optional[List[str]] = None) -> str: | |
if api_type == "azure": | |
response = openai.Completion.create( | |
engine=engine, | |
prompt=prompt, | |
temperature=temperature, | |
max_tokens=max_tokens, | |
top_p=1, | |
frequency_penalty=0.0, | |
presence_penalty=0.0, | |
stop=stop_strs, | |
# request_timeout = 1 | |
) | |
return response.choices[0].text | |
elif api_type == "openai": | |
messages = [ | |
{ | |
"role": "user", | |
"content": prompt | |
} | |
] | |
response = openai.ChatCompletion.create( | |
model=engine, | |
messages=messages, | |
max_tokens=max_tokens, | |
stop=stop_strs, | |
temperature=temperature, | |
# request_timeout = 1 | |
) | |
import pdb; pdb.set_trace() | |
return response.choices[0]["message"]["content"] | |
# @retry(wait=wait_random_exponential(min=1, max=60), stop=stop_after_attempt(6)) | |
def get_chat(prompt: str, api_type: str = "azure", model: str = "gpt-35-turbo", engine: str = "gpt-35-turbo", temperature: float = 0.0, max_tokens: int = 256, stop_strs: Optional[List[str]] = None, is_batched: bool = False) -> str: | |
assert model != "text-davinci-003" | |
messages = [ | |
{ | |
"role": "user", | |
"content": prompt | |
} | |
] | |
if api_type == "azure": | |
response = openai.ChatCompletion.create( | |
model=model, | |
engine=engine, | |
messages=messages, | |
max_tokens=max_tokens, | |
stop=stop_strs, | |
temperature=temperature, | |
# request_timeout = 1 | |
) | |
return response.choices[0]["message"]["content"] | |
elif api_type == "openai": | |
response = openai.ChatCompletion.create( | |
model=model, | |
messages=messages, | |
max_tokens=max_tokens, | |
stop=stop_strs, | |
temperature=temperature, | |
# request_timeout = 1 | |
) | |
return response.choices[0]["message"]["content"] |