Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import pipeline, AutoModelForSequenceClassification, AutoTokenizer | |
# Load the model from the hub | |
model = AutoModelForSequenceClassification.from_pretrained("MALEKSAHLIA/fine-tuned-sentiment-model-imdb") | |
tokenizer = AutoTokenizer.from_pretrained("MALEKSAHLIA/fine-tuned-sentiment-model-imdb") | |
# Create a pipeline for sentiment analysis | |
nlp = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer) | |
def predict_sentiment(sentence): | |
result = nlp(sentence) | |
sentiment = "Positive" if result[0]['label'] == 'LABEL_1' else "Negative" # Adjust the label to match your model's output | |
return sentiment | |
iface = gr.Interface( | |
fn=predict_sentiment, | |
inputs="text", | |
outputs="text", | |
title="Sentiment Analysis", | |
description="Enter a sentence to get the sentiment (Positive or Negative)." | |
) | |
iface.launch() | |