Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import pipeline, AutoModelForSequenceClassification, AutoTokenizer
|
3 |
+
|
4 |
+
# Load the model from the hub
|
5 |
+
model = AutoModelForSequenceClassification.from_pretrained("MALEKSAHLIA/fine-tuned-sentiment-model-imdb")
|
6 |
+
tokenizer = AutoTokenizer.from_pretrained("MALEKSAHLIA/fine-tuned-sentiment-model-imdb")
|
7 |
+
|
8 |
+
# Create a pipeline for sentiment analysis
|
9 |
+
nlp = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer)
|
10 |
+
|
11 |
+
def predict_sentiment(sentence):
|
12 |
+
result = nlp(sentence)
|
13 |
+
sentiment = "Positive" if result[0]['label'] == 'LABEL_1' else "Negative" # Adjust the label to match your model's output
|
14 |
+
return sentiment
|
15 |
+
|
16 |
+
iface = gr.Interface(
|
17 |
+
fn=predict_sentiment,
|
18 |
+
inputs="text",
|
19 |
+
outputs="text",
|
20 |
+
title="Sentiment Analysis",
|
21 |
+
description="Enter a sentence to get the sentiment (Positive or Negative)."
|
22 |
+
)
|
23 |
+
|
24 |
+
iface.launch()
|