MALEKSAHLIA commited on
Commit
1948298
·
verified ·
1 Parent(s): 92c6f7c

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +24 -0
app.py ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from transformers import pipeline, AutoModelForSequenceClassification, AutoTokenizer
3
+
4
+ # Load the model from the hub
5
+ model = AutoModelForSequenceClassification.from_pretrained("MALEKSAHLIA/fine-tuned-sentiment-model-imdb")
6
+ tokenizer = AutoTokenizer.from_pretrained("MALEKSAHLIA/fine-tuned-sentiment-model-imdb")
7
+
8
+ # Create a pipeline for sentiment analysis
9
+ nlp = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer)
10
+
11
+ def predict_sentiment(sentence):
12
+ result = nlp(sentence)
13
+ sentiment = "Positive" if result[0]['label'] == 'LABEL_1' else "Negative" # Adjust the label to match your model's output
14
+ return sentiment
15
+
16
+ iface = gr.Interface(
17
+ fn=predict_sentiment,
18
+ inputs="text",
19
+ outputs="text",
20
+ title="Sentiment Analysis",
21
+ description="Enter a sentence to get the sentiment (Positive or Negative)."
22
+ )
23
+
24
+ iface.launch()