Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,238 Bytes
6f63a5e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
import os
import spaces
import torch
import torchaudio
import gradio as gr
import logging
from whosper import WhosperTranscriber
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
if torch.cuda.is_available():
device = "cuda"
logger.info("Using CUDA for inference.")
elif torch.backends.mps.is_available():
device = "mps"
logger.info("Using MPS for inference.")
else:
device = "cpu"
logger.info("Using CPU for inference.")
model_id = "sudoping01/maliba-asr-v1"
transcriber = WhosperTranscriber(model_id=model_id)
logger.info(f"Transcriber initialized with model: {model_id}")
def resample_audio(audio_path, target_sample_rate=16000):
"""
Converts the audio file to the target sampling rate (16000 Hz).
Args:
audio_path (str): Path to the audio file.
target_sample_rate (int): The desired sample rate.
Returns:
A tensor containing the resampled audio data and the target sample rate.
"""
try:
waveform, original_sample_rate = torchaudio.load(audio_path)
if original_sample_rate != target_sample_rate:
resampler = torchaudio.transforms.Resample(
orig_freq=original_sample_rate,
new_freq=target_sample_rate
)
waveform = resampler(waveform)
return waveform, target_sample_rate
except Exception as e:
logger.error(f"Error resampling audio: {e}")
raise e
@spaces.GPU()
def transcribe_audio(audio_file):
"""
Transcribes the provided audio file into Bambara text using Whosper.
Args:
audio_file: The path to the audio file to transcribe.
Returns:
A string representing the transcribed Bambara text.
"""
if audio_file is None:
return "Please provide an audio file for transcription."
try:
logger.info(f"Transcribing audio file: {audio_file}")
result = transcriber.transcribe_audio(audio_file)
logger.info("Transcription successful.")
return result
except Exception as e:
logger.error(f"Transcription failed: {e}")
return f"Error during transcription: {str(e)}"
def get_example_files(directory="./examples"):
"""
Returns a list of audio files from the examples directory.
Args:
directory (str): The directory to search for audio files.
Returns:
list: A list of paths to the audio files.
"""
if not os.path.exists(directory):
logger.warning(f"Examples directory {directory} not found.")
return []
audio_extensions = ['.wav', '.mp3', '.m4a', '.flac', '.ogg']
audio_files = []
try:
files = os.listdir(directory)
for file in files:
if any(file.lower().endswith(ext) for ext in audio_extensions):
full_path = os.path.abspath(os.path.join(directory, file))
audio_files.append(full_path)
logger.info(f"Found {len(audio_files)} example audio files.")
return audio_files[:5]
except Exception as e:
logger.error(f"Error reading examples directory: {e}")
return []
def build_interface():
"""
Builds the Gradio interface for Bambara speech recognition.
"""
example_files = get_example_files()
with gr.Blocks(title="Bambara Speech Recognition") as demo:
gr.Markdown(
"""
# π€ Bambara Automatic Speech Recognition
**Powered by MALIBA-AI**
Convert Bambara speech to text using our state-of-the-art ASR model. You can either:
- ποΈ **Record** your voice directly
- π **Upload** an audio file
- π΅ **Try** our example audio files
## Supported Audio Formats
WAV, MP3, M4A, FLAC, OGG
"""
)
with gr.Row():
with gr.Column():
audio_input = gr.Audio(
label="π€ Record or Upload Audio",
type="filepath",
sources=["microphone", "upload"]
)
transcribe_btn = gr.Button(
"π Transcribe Audio",
variant="primary",
size="lg"
)
clear_btn = gr.Button("ποΈ Clear", variant="secondary")
with gr.Column():
output_text = gr.Textbox(
label="π Transcribed Text (Bambara)",
lines=8,
placeholder="Your transcribed Bambara text will appear here...",
interactive=False
)
# Examples section
if example_files:
gr.Markdown("## π΅ Try These Examples")
gr.Examples(
examples=[[f] for f in example_files],
inputs=[audio_input],
outputs=output_text,
fn=transcribe_audio,
cache_examples=False,
label="Example Audio Files"
)
# Information section
gr.Markdown(
"""
---
## βΉοΈ About This Model
- **Model:** [sudoping01/maliba-asr-v1](https://huggingface.co/sudoping01/maliba-asr-v1)
- **Developer:** MALIBA-AI
- **Language:** Bambara (bm)
- **Task:** Automatic Speech Recognition (ASR)
- **Sample Rate:** 16kHz (automatically resampled)
## π How to Use
1. **Record Audio:** Click the microphone button and speak in Bambara
2. **Upload File:** Click the upload button to select an audio file
3. **Transcribe:** Click the "Transcribe Audio" button
4. **View Results:** See your transcribed text in Bambara
## π Performance Notes
- Best results with clear speech and minimal background noise
- Supports various audio formats and durations
- Optimized for Bambara language patterns and phonetics
"""
)
transcribe_btn.click(
fn=transcribe_audio,
inputs=[audio_input],
outputs=output_text,
show_progress=True
)
clear_btn.click(
fn=lambda: (None, ""),
outputs=[audio_input, output_text]
)
audio_input.change(
fn=transcribe_audio,
inputs=[audio_input],
outputs=output_text,
show_progress=True
)
return demo
def main():
"""
Main function to launch the Gradio interface.
"""
logger.info("Starting Bambara ASR Gradio interface.")
interface = build_interface()
interface.launch(
share=False,
server_name="0.0.0.0",
server_port=7860
)
logger.info("Gradio interface launched successfully.")
if __name__ == "__main__":
main() |