File size: 5,637 Bytes
6f63a5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c7e5b6a
6f63a5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c7e5b6a
6f63a5e
 
 
 
c7e5b6a
6f63a5e
 
 
 
 
 
 
 
 
 
 
c7e5b6a
 
 
6f63a5e
 
 
c7e5b6a
 
6f63a5e
 
 
 
 
 
 
 
c7e5b6a
6f63a5e
c7e5b6a
6f63a5e
c7e5b6a
6f63a5e
 
c7e5b6a
6f63a5e
 
c7e5b6a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f63a5e
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import os
import spaces
import torch
import torchaudio
import gradio as gr
import logging
from whosper import WhosperTranscriber


logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)


if torch.cuda.is_available():
    device = "cuda"
    logger.info("Using CUDA for inference.")
elif torch.backends.mps.is_available():
    device = "mps"
    logger.info("Using MPS for inference.")
else:
    device = "cpu"
    logger.info("Using CPU for inference.")


model_id = "sudoping01/maliba-asr-v1"
transcriber = WhosperTranscriber(model_id=model_id)
logger.info(f"MALIBA-ASR-v1 transcriber initialized successfully")

def resample_audio(audio_path, target_sample_rate=16000):
    """
    Converts the audio file to the target sampling rate (16000 Hz).
    """
    try:
        waveform, original_sample_rate = torchaudio.load(audio_path)
        
        if original_sample_rate != target_sample_rate:
            resampler = torchaudio.transforms.Resample(
                orig_freq=original_sample_rate, 
                new_freq=target_sample_rate
            )
            waveform = resampler(waveform)
        
        return waveform, target_sample_rate
    except Exception as e:
        logger.error(f"Error resampling audio: {e}")
        raise e

@spaces.GPU()
def transcribe_audio(audio_file):
    """
    Transcribes the provided audio file into Bambara text using Whosper.
    """
    if audio_file is None:
        return "Please provide an audio file for transcription."
    
    try:
        logger.info(f"Transcribing audio file: {audio_file}")
        result = transcriber.transcribe_audio(audio_file)
        logger.info("Transcription successful.")
        return result
        
    except Exception as e:
        logger.error(f"Transcription failed: {e}")
        return f"Error during transcription: {str(e)}"

def get_example_files(directory="./examples"):
    """
    Returns a list of audio files from the examples directory formatted for gr.Interface examples.
    
    Args:
        directory (str): The directory to search for audio files.
    Returns:
        list: A list of [audio_path] for each example file.
    """
    if not os.path.exists(directory):
        logger.warning(f"Examples directory {directory} not found.")
        return []
    

    audio_extensions = ['.wav', '.mp3', '.m4a', '.flac', '.ogg']
    audio_files = []
    
    try:
        files = os.listdir(directory)
=
        files.sort()
        
        for file in files:
            if any(file.lower().endswith(ext) for ext in audio_extensions):
                full_path = os.path.abspath(os.path.join(directory, file))
   =
                audio_files.append([full_path])
        
        logger.info(f"Found {len(audio_files)} example audio files.")
        return audio_files[:5]  
        
    except Exception as e:
        logger.error(f"Error reading examples directory: {e}")
        return []

def main():
    """
    Main function to launch the Gradio interface using gr.Interface.
    """
    logger.info("Starting MALIBA-ASR-v1 Gradio interface.")
    

    example_files = get_example_files()
    

    interface = gr.Interface(
        fn=transcribe_audio,
        inputs=[
            gr.Audio(
                label=" Record or Upload Audio", 
                type="filepath",
                sources=["microphone", "upload"]
            )
        ],
        outputs=gr.Textbox(
            label="πŸ“ Transcribed Text (Bambara)",
            lines=8,
            placeholder="Your transcribed Bambara text will appear here..."
        ),
        title="🎀 MALIBA-ASR-v1: Bambara Speech Recognition",
        description="""
                    **Revolutionizing Bambara Speech Technology | Powered by MALIBA-AI**
                    
                    Experience breakthrough Bambara speech recognition with **MALIBA-ASR-v1** - the most advanced open-source ASR model for Bambara, serving over 22 million speakers across Mali and West Africa.
                    
                    
                    **Performance**: WER 0.226 | CER 0.109 on (6-hour test set)
                            """,
        examples=example_files if example_files else None,
        cache_examples=False,
        article="""
---

## πŸ† MALIBA-ASR-v1 Performance

| Metric | Value | Benchmark |
|--------|-------|-----------|
| **WER** | **0.226** | oza75/bambara-asr (test set) |
| **CER** | **0.109** | oza75/bambara-asr (test set) |
| **Test Duration** | **6 hours** | Diverse speakers & dialects |

##  Revolutionary Impact

**MALIBA-ASR-v1** sets a new standard for Bambara speech recognition, significantly outperforming all existing open-source solutions. This breakthrough enables:

##  πŸ‡²πŸ‡± About MALIBA-AI  πŸ‡²πŸ‡±

MALIBA-AI is committed to ensuring **"No Malian Language Left Behind"** by:
- Breaking digital language barriers for 22+ million Bambara speakers
- Building cutting-edge AI technology for African languages
- Preserving Mali's rich linguistic and cultural heritage
- Democratizing access to voice technology across literacy levels
- Training the next generation of African AI researchers

---

**Model**: [sudoping01/maliba-asr-v1](https://huggingface.co/sudoping01/maliba-asr-v1) | **Dataset**: [oza75/bambara-asr](https://huggingface.co/datasets/oza75/bambara-asr)

*Empowering Mali's Future Through Community-Driven AI Innovation* πŸ‡²πŸ‡±
        """
    )
    
    interface.launch(
        share=False,
        server_name="0.0.0.0",
        server_port=7860
    )
    
    logger.info("Gradio interface launched successfully.")

if __name__ == "__main__":
    main()