Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,246 +1,188 @@
|
|
1 |
-
import os
|
2 |
-
import spaces
|
3 |
-
import torch
|
4 |
-
import torchaudio
|
5 |
import gradio as gr
|
6 |
-
import
|
7 |
-
from whosper import WhosperTranscriber
|
8 |
-
|
9 |
-
|
10 |
-
logging.basicConfig(level=logging.INFO)
|
11 |
-
logger = logging.getLogger(__name__)
|
12 |
-
|
13 |
-
|
14 |
-
if torch.cuda.is_available():
|
15 |
-
device = "cuda"
|
16 |
-
logger.info("Using CUDA for inference.")
|
17 |
-
elif torch.backends.mps.is_available():
|
18 |
-
device = "mps"
|
19 |
-
logger.info("Using MPS for inference.")
|
20 |
-
else:
|
21 |
-
device = "cpu"
|
22 |
-
logger.info("Using CPU for inference.")
|
23 |
-
|
24 |
-
|
25 |
-
model_id = "sudoping01/maliba-asr-v1"
|
26 |
-
transcriber = WhosperTranscriber(model_id=model_id)
|
27 |
-
logger.info(f"Transcriber initialized with model: {model_id}")
|
28 |
-
|
29 |
-
def resample_audio(audio_path, target_sample_rate=16000):
|
30 |
-
|
31 |
-
"""
|
32 |
-
Converts the audio file to the target sampling rate (16000 Hz).
|
33 |
-
|
34 |
-
Args:
|
35 |
-
audio_path (str): Path to the audio file.
|
36 |
-
target_sample_rate (int): The desired sample rate.
|
37 |
-
Returns:
|
38 |
-
A tensor containing the resampled audio data and the target sample rate.
|
39 |
-
"""
|
40 |
-
try:
|
41 |
-
waveform, original_sample_rate = torchaudio.load(audio_path)
|
42 |
-
|
43 |
-
if original_sample_rate != target_sample_rate:
|
44 |
-
resampler = torchaudio.transforms.Resample(
|
45 |
-
orig_freq=original_sample_rate,
|
46 |
-
new_freq=target_sample_rate
|
47 |
-
)
|
48 |
-
waveform = resampler(waveform)
|
49 |
-
|
50 |
-
return waveform, target_sample_rate
|
51 |
-
except Exception as e:
|
52 |
-
logger.error(f"Error resampling audio: {e}")
|
53 |
-
raise e
|
54 |
-
|
55 |
-
@spaces.GPU()
|
56 |
-
def transcribe_audio(audio_file):
|
57 |
-
|
58 |
-
"""
|
59 |
-
Transcribes the provided audio file into Bambara text using Whosper.
|
60 |
-
|
61 |
-
Args:
|
62 |
-
audio_file: The path to the audio file to transcribe.
|
63 |
-
Returns:
|
64 |
-
A string representing the transcribed Bambara text.
|
65 |
-
"""
|
66 |
-
|
67 |
-
if audio_file is None:
|
68 |
-
return "Please provide an audio file for transcription."
|
69 |
-
|
70 |
-
try:
|
71 |
-
logger.info(f"Transcribing audio file: {audio_file}")
|
72 |
-
|
73 |
-
|
74 |
-
result = transcriber.transcribe_audio(audio_file)
|
75 |
-
|
76 |
-
logger.info("Transcription successful.")
|
77 |
-
return result
|
78 |
-
|
79 |
-
except Exception as e:
|
80 |
-
logger.error(f"Transcription failed: {e}")
|
81 |
-
return f"Error during transcription: {str(e)}"
|
82 |
-
|
83 |
-
def get_example_files(directory="./examples"):
|
84 |
-
|
85 |
-
"""
|
86 |
-
Returns a list of audio files from the examples directory.
|
87 |
-
|
88 |
-
Args:
|
89 |
-
directory (str): The directory to search for audio files.
|
90 |
-
Returns:
|
91 |
-
list: A list of paths to the audio files.
|
92 |
-
"""
|
93 |
-
|
94 |
-
if not os.path.exists(directory):
|
95 |
-
logger.warning(f"Examples directory {directory} not found.")
|
96 |
-
return []
|
97 |
-
|
98 |
-
|
99 |
-
audio_extensions = ['.wav', '.mp3', '.m4a', '.flac', '.ogg']
|
100 |
-
audio_files = []
|
101 |
-
|
102 |
-
try:
|
103 |
-
files = os.listdir(directory)
|
104 |
-
for file in files:
|
105 |
-
if any(file.lower().endswith(ext) for ext in audio_extensions):
|
106 |
-
full_path = os.path.abspath(os.path.join(directory, file))
|
107 |
-
audio_files.append(full_path)
|
108 |
-
|
109 |
-
logger.info(f"Found {len(audio_files)} example audio files.")
|
110 |
-
return audio_files[:5]
|
111 |
-
|
112 |
-
except Exception as e:
|
113 |
-
logger.error(f"Error reading examples directory: {e}")
|
114 |
-
return []
|
115 |
|
116 |
def build_interface():
|
117 |
"""
|
118 |
-
Builds
|
119 |
"""
|
120 |
-
|
121 |
example_files = get_example_files()
|
122 |
|
123 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
124 |
gr.Markdown(
|
125 |
"""
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
Convert Bambara speech to text using our state-of-the-art ASR model. You can either:
|
131 |
-
- ποΈ **Record** your voice directly
|
132 |
-
- π **Upload** an audio file
|
133 |
-
- π΅ **Try** our example audio files
|
134 |
-
|
135 |
-
## Supported Audio Formats
|
136 |
-
WAV, MP3, M4A, FLAC, OGG
|
137 |
"""
|
138 |
)
|
139 |
-
|
140 |
-
with gr.Row():
|
141 |
-
with gr.Column():
|
142 |
|
|
|
|
|
|
|
|
|
143 |
audio_input = gr.Audio(
|
144 |
-
label="
|
145 |
type="filepath",
|
146 |
-
sources=["microphone", "upload"]
|
|
|
147 |
)
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
size="lg"
|
153 |
)
|
154 |
-
|
155 |
|
156 |
-
|
157 |
-
|
158 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
159 |
output_text = gr.Textbox(
|
160 |
-
label="
|
161 |
-
lines=
|
162 |
placeholder="Your transcribed Bambara text will appear here...",
|
163 |
-
interactive=False
|
|
|
164 |
)
|
165 |
-
|
166 |
-
|
|
|
|
|
|
|
|
|
167 |
if example_files:
|
168 |
-
gr.Markdown("## π΅ Try
|
169 |
-
gr.
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
179 |
gr.Markdown(
|
180 |
"""
|
181 |
-
|
182 |
-
|
183 |
-
## βΉοΈ About This Model
|
184 |
-
|
185 |
-
- **Model:** [sudoping01/maliba-asr-v1](https://huggingface.co/sudoping01/maliba-asr-v1)
|
186 |
-
- **Developer:** MALIBA-AI
|
187 |
-
- **Language:** Bambara (bm)
|
188 |
-
- **Task:** Automatic Speech Recognition (ASR)
|
189 |
-
- **Sample Rate:** 16kHz (automatically resampled)
|
190 |
|
191 |
-
|
|
|
|
|
|
|
192 |
|
193 |
-
|
194 |
-
2. **Upload File:** Click the upload button to select an audio file
|
195 |
-
3. **Transcribe:** Click the "Transcribe Audio" button
|
196 |
-
4. **View Results:** See your transcribed text in Bambara
|
197 |
|
198 |
-
|
199 |
-
|
200 |
-
-
|
201 |
-
-
|
202 |
-
|
203 |
"""
|
204 |
)
|
205 |
-
|
206 |
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
|
|
|
|
|
|
219 |
|
220 |
audio_input.change(
|
221 |
-
fn=
|
222 |
-
inputs=
|
223 |
-
outputs=
|
|
|
|
|
|
|
|
|
224 |
show_progress=True
|
225 |
)
|
226 |
-
|
227 |
-
return demo
|
228 |
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
server_port=7860
|
241 |
-
)
|
242 |
-
|
243 |
-
logger.info("Gradio interface launched successfully.")
|
244 |
|
245 |
-
|
246 |
-
main()
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
def build_interface():
|
5 |
"""
|
6 |
+
Builds an enhanced Gradio interface for Bambara speech recognition.
|
7 |
"""
|
|
|
8 |
example_files = get_example_files()
|
9 |
|
10 |
+
custom_css = """
|
11 |
+
.gr-button-primary {
|
12 |
+
background-color: #2c5282 !important;
|
13 |
+
color: white !important;
|
14 |
+
border-radius: 8px !important;
|
15 |
+
font-weight: bold !important;
|
16 |
+
}
|
17 |
+
.gr-button-secondary {
|
18 |
+
background-color: #e2e8f0 !important;
|
19 |
+
color: #2d3748 !important;
|
20 |
+
border-radius: 8px !important;
|
21 |
+
}
|
22 |
+
.example-container {
|
23 |
+
background-color: #f7fafc;
|
24 |
+
padding: 16px;
|
25 |
+
border-radius: 8px;
|
26 |
+
margin-top: 16px;
|
27 |
+
}
|
28 |
+
.gr-textbox {
|
29 |
+
border-radius: 8px !important;
|
30 |
+
border: 1px solid #cbd5e0 !important;
|
31 |
+
}
|
32 |
+
.gr-audio {
|
33 |
+
border-radius: 8px !important;
|
34 |
+
}
|
35 |
+
.header {
|
36 |
+
text-align: center;
|
37 |
+
color: #2d3748;
|
38 |
+
}
|
39 |
+
.info-section {
|
40 |
+
background-color: #edf2f7;
|
41 |
+
padding: 16px;
|
42 |
+
border-radius: 8px;
|
43 |
+
margin-top: 16px;
|
44 |
+
}
|
45 |
+
"""
|
46 |
+
|
47 |
+
with gr.Blocks(title="Bambara Speech Recognition", css=custom_css) as demo:
|
48 |
+
# Header
|
49 |
gr.Markdown(
|
50 |
"""
|
51 |
+
<h1 class="header">π€ Bambara Speech Recognition</h1>
|
52 |
+
<p style="text-align: center; color: #4a5568;">
|
53 |
+
Powered by <b>MALIBA-AI</b> | Convert Bambara speech to text effortlessly
|
54 |
+
</p>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
"""
|
56 |
)
|
|
|
|
|
|
|
57 |
|
58 |
+
# Main interaction section
|
59 |
+
with gr.Row():
|
60 |
+
with gr.Column(scale=1):
|
61 |
+
gr.Markdown("### ποΈ Record or Upload Audio")
|
62 |
audio_input = gr.Audio(
|
63 |
+
label="Record or Upload Audio",
|
64 |
type="filepath",
|
65 |
+
sources=["microphone", "upload"],
|
66 |
+
show_label=False
|
67 |
)
|
68 |
+
audio_preview = gr.Audio(
|
69 |
+
label="Preview Your Audio",
|
70 |
+
interactive=False,
|
71 |
+
visible=False
|
|
|
72 |
)
|
|
|
73 |
|
74 |
+
with gr.Row():
|
75 |
+
transcribe_btn = gr.Button(
|
76 |
+
"π Transcribe Audio",
|
77 |
+
variant="primary",
|
78 |
+
size="lg"
|
79 |
+
)
|
80 |
+
clear_btn = gr.Button(
|
81 |
+
"ποΈ Clear",
|
82 |
+
variant="secondary",
|
83 |
+
size="lg"
|
84 |
+
)
|
85 |
+
|
86 |
+
with gr.Column(scale=1):
|
87 |
+
gr.Markdown("### π Transcription Output")
|
88 |
output_text = gr.Textbox(
|
89 |
+
label="Transcribed Text (Bambara)",
|
90 |
+
lines=6,
|
91 |
placeholder="Your transcribed Bambara text will appear here...",
|
92 |
+
interactive=False,
|
93 |
+
show_copy_button=True
|
94 |
)
|
95 |
+
status_message = gr.Markdown(
|
96 |
+
value="",
|
97 |
+
visible=False
|
98 |
+
)
|
99 |
+
|
100 |
+
# Example audio section
|
101 |
if example_files:
|
102 |
+
gr.Markdown("## π΅ Try Example Audio Files")
|
103 |
+
with gr.Group(elem_classes="example-container"):
|
104 |
+
gr.Markdown(
|
105 |
+
"""
|
106 |
+
Listen to these sample Bambara audio files and transcribe them with one click.
|
107 |
+
"""
|
108 |
+
)
|
109 |
+
for idx, file in enumerate(example_files):
|
110 |
+
with gr.Row():
|
111 |
+
gr.Audio(
|
112 |
+
value=file,
|
113 |
+
label=f"Example {idx + 1}: {os.path.basename(file)}",
|
114 |
+
interactive=False,
|
115 |
+
show_label=True
|
116 |
+
)
|
117 |
+
gr.Button(
|
118 |
+
f"Transcribe Example {idx + 1}",
|
119 |
+
variant="primary",
|
120 |
+
size="sm"
|
121 |
+
).click(
|
122 |
+
fn=transcribe_audio,
|
123 |
+
inputs=gr.State(value=file),
|
124 |
+
outputs=[output_text, status_message],
|
125 |
+
show_progress=True,
|
126 |
+
_js="() => {return {show_progress: true}}"
|
127 |
+
)
|
128 |
+
|
129 |
gr.Markdown(
|
130 |
"""
|
131 |
+
<div class="info-section">
|
132 |
+
## βΉοΈ How to Use
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
|
134 |
+
1. **Record**: Click the microphone to speak in Bambara.
|
135 |
+
2. **Upload**: Select an audio file (WAV, MP3, M4A, FLAC, OGG).
|
136 |
+
3. **Transcribe**: Click "Transcribe Audio" or try an example.
|
137 |
+
4. **View**: See the transcribed text in Bambara.
|
138 |
|
139 |
+
## π Model Details
|
|
|
|
|
|
|
140 |
|
141 |
+
- **Model**: [sudoping01/maliba-asr-v1](https://huggingface.co/sudoping01/maliba-asr-v1)
|
142 |
+
- **Language**: Bambara (bm)
|
143 |
+
- **Sample Rate**: 16kHz (auto-resampled)
|
144 |
+
- **Best for**: Clear speech with minimal background noise
|
145 |
+
</div>
|
146 |
"""
|
147 |
)
|
|
|
148 |
|
149 |
+
|
150 |
+
def update_audio_preview(audio_file):
|
151 |
+
return gr.update(value=audio_file, visible=True), ""
|
152 |
+
|
153 |
+
def clear_inputs():
|
154 |
+
return None, "", gr.update(visible=False), ""
|
155 |
+
|
156 |
+
def transcribe_with_status(audio_file):
|
157 |
+
if not audio_file:
|
158 |
+
return "", "**Error**: Please provide an audio file."
|
159 |
+
result = transcribe_audio(audio_file)
|
160 |
+
if "Error" in result:
|
161 |
+
return result, f"**Error**: {result}"
|
162 |
+
return result, "**Success**: Transcription completed!"
|
163 |
+
|
164 |
|
165 |
audio_input.change(
|
166 |
+
fn=update_audio_preview,
|
167 |
+
inputs=audio_input,
|
168 |
+
outputs=[audio_preview, status_message]
|
169 |
+
).then(
|
170 |
+
fn=transcribe_with_status,
|
171 |
+
inputs=audio_input,
|
172 |
+
outputs=[output_text, status_message],
|
173 |
show_progress=True
|
174 |
)
|
|
|
|
|
175 |
|
176 |
+
transcribe_btn.click(
|
177 |
+
fn=transcribe_with_status,
|
178 |
+
inputs=audio_input,
|
179 |
+
outputs=[output_text, status_message],
|
180 |
+
show_progress=True
|
181 |
+
)
|
182 |
|
183 |
+
clear_btn.click(
|
184 |
+
fn=clear_inputs,
|
185 |
+
outputs=[audio_input, output_text, audio_preview, status_message]
|
186 |
+
)
|
|
|
|
|
|
|
|
|
187 |
|
188 |
+
return demo
|
|