File size: 9,963 Bytes
3f89022
 
92275ac
3f89022
fa84412
3f89022
faebdf2
fa84412
 
 
3f89022
 
 
 
 
fa84412
 
 
 
3f89022
fa84412
 
 
 
92275ac
fa84412
 
92275ac
fa84412
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
92275ac
fa84412
3f89022
 
 
 
 
 
fa84412
 
3f89022
 
 
 
 
 
 
 
 
 
 
fa84412
3f89022
 
 
 
 
fa84412
 
faebdf2
92275ac
3f89022
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa84412
3f89022
 
fa84412
92275ac
 
3f89022
 
 
 
 
 
 
 
 
 
 
 
fa84412
 
3f89022
fa84412
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f89022
 
fa84412
 
 
 
3f89022
 
fa84412
 
 
 
 
 
 
3f89022
 
fa84412
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f89022
 
fa84412
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f89022
fa84412
 
3f89022
fa84412
 
 
 
 
3f89022
fa84412
 
 
 
 
 
 
 
 
 
 
 
 
3f89022
fa84412
 
 
 
 
3f89022
fa84412
 
 
 
 
3f89022
 
fa84412
3f89022
 
fa84412
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
import gradio as gr
import numpy as np
import os
import spaces
import logging
from huggingface_hub import login

# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

hf_token = os.getenv("HF_TOKEN")
if hf_token:
    login(token=hf_token)

# Global variables for model and speakers
tts_model = None
speakers_dict = None
model_initialized = False

@spaces.GPU()
def initialize_model():
    """Initialize the TTS model and speakers - called once with GPU context"""
    global tts_model, speakers_dict, model_initialized
    
    if not model_initialized:
        logger.info("Initializing Bambara TTS model...")
        
        try:
            # Import inside GPU context to avoid CUDA initialization errors
            from maliba_ai.tts.inference import BambaraTTSInference
            from maliba_ai.config.speakers import Adame, Moussa, Bourama, Modibo, Seydou
            
            # Initialize model
            tts_model = BambaraTTSInference()
            
            # Initialize speakers
            speakers_dict = {
                "Adame": Adame,
                "Moussa": Moussa, 
                "Bourama": Bourama,
                "Modibo": Modibo,
                "Seydou": Seydou
            }
            
            model_initialized = True
            logger.info("Model initialized successfully!")
            
        except Exception as e:
            logger.error(f"Failed to initialize model: {e}")
            raise e
    
    return tts_model, speakers_dict

def validate_inputs(text, temperature, top_k, top_p, max_tokens):
    """Validate user inputs"""
    if not text or not text.strip():
        return False, "Please enter some Bambara text."
    
    if not (0.001 <= temperature <= 2.0):
        return False, "Temperature must be between 0.001 and 2.0"
    
    if not (1 <= top_k <= 100):
        return False, "Top-K must be between 1 and 100"
    
    if not (0.1 <= top_p <= 1.0):
        return False, "Top-P must be between 0.1 and 1.0"
    
    return True, ""

@spaces.GPU()
def generate_speech(text, speaker_name, use_advanced, temperature, top_k, top_p, max_tokens):
    """Generate speech using the pre-loaded model"""
    
    if not text.strip():
        return None, "Please enter some Bambara text."
    
    try:
        # Get the initialized model and speakers
        tts, speakers = initialize_model()
        
        speaker = speakers[speaker_name]
        
        if use_advanced:
            is_valid, error_msg = validate_inputs(text, temperature, top_k, top_p, max_tokens)
            if not is_valid:
                return None, f"❌ {error_msg}"
            
            waveform = tts.generate_speech(
                text=text.strip(),
                speaker_id=speaker,
                temperature=temperature,
                top_k=int(top_k),
                top_p=top_p,
                max_new_audio_tokens=int(max_tokens)
            )
        else:
            waveform = tts.generate_speech(
                text=text.strip(),
                speaker_id=speaker
            )
        
        if waveform.size == 0:
            return None, "Failed to generate audio. Please try again."
        
        sample_rate = 16000
        return (sample_rate, waveform), f"✅ Audio generated successfully"
        
    except Exception as e:
        logger.error(f"Speech generation failed: {e}")
        return None, f"❌ Error: {str(e)}"

# Define speaker names for UI
SPEAKER_NAMES = ["Adame", "Moussa", "Bourama", "Modibo", "Seydou"]

examples = [
    ["Aw ni ce", "Adame"],
    ["I ni ce", "Moussa"],
    ["Aw ni tile", "Bourama"],
    ["I ka kene wa?", "Modibo"],
    ["Ala ka Mali suma", "Adame"],
    ["sigikafɔ kɔnɔ jamanaw ni ɲɔgɔn cɛ, olu ye a haminankow ye, wa o ko ninnu ka kan ka kɛ sariya ani tilennenya kɔnɔ", "Seydou"],
    ["Aw ni ce. Ne tɔgɔ ye Kaya Magan. Aw Sanbe Sanbe.", "Moussa"],
    ["An dɔlakelen bɛ masike bilenman don ka tɔw gɛn.", "Bourama"],
    ["Aw ni ce. Seidu bɛ aw fo wa aw ka yafa a ma, ka da a kan tuma dɔw la kow ka can.", "Modibo"],
]

def build_interface():
    """Build the Gradio interface for Bambara TTS"""
    
    with gr.Blocks(title="Bambara TTS - EXPERIMENTAL", theme=gr.themes.Soft()) as demo:
        gr.Markdown("""
        # 🎤 Bambara Text-to-Speech ⚠️ EXPERIMENTAL
        
        Convert Bambara text to speech using AI. This model is currently experimental.
        
        **Bambara** is spoken by millions of people in Mali and West Africa.
        
        ⚡ **Note**: Model loads automatically on first use and stays loaded for optimal performance.
        """)
        
        with gr.Row():
            with gr.Column(scale=2):
                # Input section
                text_input = gr.Textbox(
                    label="📝 Bambara Text",
                    placeholder="Type your Bambara text here...",
                    lines=3,
                    max_lines=6,
                    value="Aw ni ce"
                )
                
                speaker_dropdown = gr.Dropdown(
                    choices=SPEAKER_NAMES,
                    value="Adame",
                    label="🗣️ Speaker Voice"
                )
                
                generate_btn = gr.Button("🎵 Generate Speech", variant="primary", size="lg")
                
            with gr.Column(scale=1):
                use_advanced = gr.Checkbox(
                    label="⚙️ Use Advanced Settings", 
                    value=False,
                    info="Enable to customize generation parameters"
                )
                
                with gr.Group(visible=False) as advanced_group:
                    gr.Markdown("**Advanced Parameters:**")
                    
                    temperature = gr.Slider(
                        minimum=0.1, 
                        maximum=2.0, 
                        value=0.8, 
                        step=0.1,
                        label="Temperature",
                        info="Higher = more varied"
                    )
                    
                    top_k = gr.Slider(
                        minimum=1, 
                        maximum=100, 
                        value=50, 
                        step=5,
                        label="Top-K"
                    )
                    
                    top_p = gr.Slider(
                        minimum=0.1, 
                        maximum=1.0, 
                        value=0.9, 
                        step=0.05,
                        label="Top-P"
                    )
                    
                    max_tokens = gr.Slider(
                        minimum=256, 
                        maximum=4096, 
                        value=2048, 
                        step=256,
                        label="Max Length"
                    )
        
        gr.Markdown("### 🔊 Generated Audio")
        
        audio_output = gr.Audio(
            label="Generated Speech",
            type="numpy",
            interactive=False
        )
            
        status_output = gr.Textbox(
            label="Status",
            interactive=False,
            show_label=False,
            container=False
        )
        
        with gr.Accordion("📚 Try These Examples", open=True):
            def load_example(text, speaker):
                return text, speaker, False, 0.8, 50, 0.9, 2048
            
            gr.Markdown("**Click any example below:**")
            
            for i, (text, speaker) in enumerate(examples):
                btn = gr.Button(f"🎯 {text[:30]}{'...' if len(text) > 30 else ''}", size="sm")
                btn.click(
                    fn=lambda t=text, s=speaker: load_example(t, s),
                    outputs=[text_input, speaker_dropdown, use_advanced, temperature, top_k, top_p, max_tokens]
                )
        
        # Information section
        with gr.Accordion("ℹ️ About", open=False):
            gr.Markdown("""
            **⚠️ This is an experimental Bambara TTS model.**
            
            - **Model**: Based on SparkTTS architecture with BiCodec
            - **Languages**: Bambara (bm)
            - **Speakers**: 5 different voice options
            - **Sample Rate**: 16kHz
            - **Architecture**: Neural codec with semantic and global tokens
            
            ## 🚀 How to Use
            
            1. **Enter Text**: Type your Bambara text in the input box
            2. **Choose Speaker**: Select from 5 available voice options
            3. **Advanced Settings**: Optionally adjust generation parameters
            4. **Generate**: Click the generate button to create speech
            """)
        
        def toggle_advanced(use_adv):
            return gr.Group(visible=use_adv)
        
        use_advanced.change(
            fn=toggle_advanced,
            inputs=[use_advanced],
            outputs=[advanced_group]
        )
        
        generate_btn.click(
            fn=generate_speech,
            inputs=[text_input, speaker_dropdown, use_advanced, temperature, top_k, top_p, max_tokens],
            outputs=[audio_output, status_output],
            show_progress=True
        )
        
        text_input.submit(
            fn=generate_speech,
            inputs=[text_input, speaker_dropdown, use_advanced, temperature, top_k, top_p, max_tokens],
            outputs=[audio_output, status_output],
            show_progress=True
        )
    
    return demo

def main():
    """Main function to launch the Gradio interface"""
    logger.info("Starting Bambara TTS Gradio interface.")
    
    interface = build_interface()
    interface.launch(
        server_name="0.0.0.0",
        server_port=7860,
        share=False
    )
    
    logger.info("Gradio interface launched successfully.")

if __name__ == "__main__":
    main()