File size: 8,093 Bytes
faebdf2
 
 
 
 
 
 
 
 
 
 
 
3f89022
 
 
 
faebdf2
 
3f89022
 
 
 
 
 
 
faebdf2
3f89022
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
faebdf2
 
 
 
 
 
 
3f89022
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
faebdf2
 
3f89022
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
faebdf2
 
3f89022
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
import os
import warnings

# Set environment variables BEFORE any imports to prevent CUDA initialization
os.environ["CUDA_VISIBLE_DEVICES"] = ""  # Hide CUDA during startup
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:128"
os.environ["TOKENIZERS_PARALLELISM"] = "false"
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"  # For debugging

# Suppress warnings
warnings.filterwarnings("ignore")

import gradio as gr
import numpy as np
import spaces
from huggingface_hub import login

# These imports should now work without CUDA errors
from maliba_ai.tts.inference import BambaraTTSInference
from maliba_ai.config.speakers import Adame, Moussa, Bourama, Modibo, Seydou

hf_token = os.getenv("HF_TOKEN")
if hf_token:
    login(token=hf_token)

# Initialize TTS model (this will use CPU during startup)
print("Loading Bambara TTS model...")
tts = BambaraTTSInference()
print("Model loaded successfully!")

SPEAKERS = {
    "Adame": Adame,
    "Moussa": Moussa, 
    "Bourama": Bourama,
    "Modibo": Modibo,
    "Seydou": Seydou
}

def validate_inputs(text, temperature, top_k, top_p, max_tokens):
    """Validate user inputs"""
    if not text or not text.strip():
        return False, "Please enter some Bambara text."
    
    if not (0.001 <= temperature <= 1):
        return False, "Temperature must be between positive"
    
    if not (1 <= top_k <= 100):
        return False, "Top-K must be between 1 and 100"
    
    if not (0.1 <= top_p <= 1.0):
        return False, "Top-P must be between 0.1 and 1.0"
    
    return True, ""

@spaces.GPU()
def generate_speech(text, speaker_name, use_advanced, temperature, top_k, top_p, max_tokens):
    
    if not text.strip():
        return None, "Please enter some Bambara text."
    
    try:
        # Re-enable CUDA for GPU context
        import torch
        if torch.cuda.is_available():
            # Remove CUDA visibility restriction for GPU execution
            if "CUDA_VISIBLE_DEVICES" in os.environ:
                os.environ.pop("CUDA_VISIBLE_DEVICES", None)
        
        speaker = SPEAKERS[speaker_name]
        
        if use_advanced:
            is_valid, error_msg = validate_inputs(text, temperature, top_k, top_p, max_tokens)
            if not is_valid:
                return None, f"❌ {error_msg}"
            
            waveform = tts.generate_speech(
                text=text.strip(),
                speaker_id=speaker,
                temperature=temperature,
                top_k=int(top_k),
                top_p=top_p,
                max_new_audio_tokens=int(max_tokens)
            )
        else:
            waveform = tts.generate_speech(
                text=text.strip(),
                speaker_id=speaker
            )
        
        if waveform.size == 0:
            return None, "Failed to generate audio. Please try again."
        
        sample_rate = 16000
        return (sample_rate, waveform), f"✅ Audio generated successfully"
        
    except Exception as e:
        return None, f"❌ Error: {str(e)}"

examples = [
    ["Aw ni ce", "Adame"],
    ["I ni ce", "Moussa"],
    ["Aw ni tile", "Bourama"],
    ["I ka kene wa?", "Modibo"],
    ["Ala ka Mali suma", "Adame"],
    ["sigikafɔ kɔnɔ jamanaw ni ɲɔgɔn cɛ, olu ye a haminankow ye, wa o ko ninnu ka kan ka kɛ sariya ani tilennenya kɔnɔ", "Seydou"],
    ["Aw ni ce. Ne tɔgɔ ye Kaya Magan. Aw Sanbe Sanbe.", "Moussa"],
    ["An dɔlakelen bɛ masike bilenman don ka tɔw gɛn.", "Bourama"],
    ["Aw ni ce. Seidu bɛ aw fo wa aw ka yafa a ma, ka da a kan tuma dɔw la kow ka can.", "Modibo"],
]

# Create Gradio interface
with gr.Blocks(title="Bambara TTS - EXPERIMENTAL", theme=gr.themes.Soft()) as demo:
    gr.Markdown("""
    # 🎤 Bambara Text-to-Speech ⚠️ EXPERIMENTAL
    
    Convert Bambara text to speech using AI. This model is currently experimental.
    
    **Bambara** is spoken by millions of people in Mali and West Africa.
    
    ⚡ **Note**: Model loads on CPU during startup, then uses GPU for generation.
    """)
    
    with gr.Row():
        with gr.Column(scale=2):
            # Input section
            text_input = gr.Textbox(
                label="📝 Bambara Text",
                placeholder="Type your Bambara text here...",
                lines=3,
                max_lines=6,
                value="Aw ni ce"
            )
            
            speaker_dropdown = gr.Dropdown(
                choices=list(SPEAKERS.keys()),
                value="Adame",
                label="🗣️ Speaker Voice"
            )
            
            generate_btn = gr.Button("🎵 Generate Speech", variant="primary", size="lg")
            
        with gr.Column(scale=1):
            use_advanced = gr.Checkbox(
                label="⚙️ Use Advanced Settings", 
                value=False,
                info="Enable to customize generation parameters"
            )
            
            with gr.Group(visible=False) as advanced_group:
                gr.Markdown("**Advanced Parameters:**")
                
                temperature = gr.Slider(
                    minimum=0.1, 
                    maximum=2.0, 
                    value=0.8, 
                    step=0.1,
                    label="Temperature",
                    info="Higher = more varied"
                )
                
                top_k = gr.Slider(
                    minimum=1, 
                    maximum=100, 
                    value=50, 
                    step=5,
                    label="Top-K"
                )
                
                top_p = gr.Slider(
                    minimum=0.1, 
                    maximum=1.0, 
                    value=0.9, 
                    step=0.05,
                    label="Top-P"
                )
                
                max_tokens = gr.Slider(
                    minimum=256, 
                    maximum=4096, 
                    value=2048, 
                    step=256,
                    label="Max Length"
                )
    
    gr.Markdown("### 🔊 Generated Audio")
    
    audio_output = gr.Audio(
        label="Generated Speech",
        type="numpy",
        interactive=False
    )
        
    status_output = gr.Textbox(
        label="Status",
        interactive=False,
        show_label=False,
        container=False
    )
    
    with gr.Accordion("📚 Try These Examples", open=True):
        def load_example(text, speaker):
            return text, speaker, False, 0.8, 50, 0.9, 2048
        
        gr.Markdown("**Click any example below:**")
        example_buttons = []
        
        for i, (text, speaker) in enumerate(examples):
            btn = gr.Button(f"🎯 {text[:30]}{'...' if len(text) > 30 else ''}", size="sm")
            btn.click(
                fn=lambda t=text, s=speaker: load_example(t, s),
                outputs=[text_input, speaker_dropdown, use_advanced, temperature, top_k, top_p, max_tokens]
            )
    
    # Information section
    with gr.Accordion("ℹ️ About", open=False):
        gr.Markdown("""
        **⚠️ This is an experimental Bambara TTS model.**
        
        The model loads on CPU during startup to avoid CUDA initialization errors,
        then switches to GPU during speech generation for optimal performance.
        """)
    
    def toggle_advanced(use_adv):
        return gr.Group(visible=use_adv)
    
    use_advanced.change(
        fn=toggle_advanced,
        inputs=[use_advanced],
        outputs=[advanced_group]
    )
    
    generate_btn.click(
        fn=generate_speech,
        inputs=[text_input, speaker_dropdown, use_advanced, temperature, top_k, top_p, max_tokens],
        outputs=[audio_output, status_output]
    )
    
    text_input.submit(
        fn=generate_speech,
        inputs=[text_input, speaker_dropdown, use_advanced, temperature, top_k, top_p, max_tokens],
        outputs=[audio_output, status_output]
    )

if __name__ == "__main__":
    demo.launch(
        server_name="0.0.0.0",
        server_port=7860,
        share=False
    )