sudoping01's picture
Update app.py
fdebe26 verified
raw
history blame
9.68 kB
import gradio as gr
import pandas as pd
from datasets import load_dataset
from jiwer import wer, cer
import os
from datetime import datetime
import re
from huggingface_hub import login
token = os.environ.get("HG_TOKEN")
login(token)
print("Loading dataset...")
dataset = load_dataset("sudoping01/bambara-speech-recognition-benchmark", name="default")["eval"]
references = {row["id"]: row["text"] for row in dataset}
leaderboard_file = "leaderboard.csv"
if not os.path.exists(leaderboard_file):
pd.DataFrame(columns=["Model_Name", "WER", "CER", "Combined_Score", "timestamp"]).to_csv(leaderboard_file, index=False)
else:
leaderboard_df = pd.read_csv(leaderboard_file)
if "Combined_Score" not in leaderboard_df.columns:
leaderboard_df["Combined_Score"] = leaderboard_df["WER"] * 0.7 + leaderboard_df["CER"] * 0.3 # WER 70% and CER 30%
leaderboard_df.to_csv(leaderboard_file, index=False)
def normalize_text(text):
"""
Normalize text for WER/CER calculation:
- Convert to lowercase
- Remove punctuation
- Replace multiple spaces with single space
- Strip leading/trailing spaces
"""
if not isinstance(text, str):
text = str(text)
text = text.lower()
text = re.sub(r'[^\w\s]', '', text)
text = re.sub(r'\s+', ' ', text).strip()
return text
def calculate_metrics(predictions_df):
"""Calculate WER and CER for predictions."""
results = []
total_ref_words = 0
total_ref_chars = 0
for _, row in predictions_df.iterrows():
id_val = row["id"]
if id_val not in references:
continue
reference = normalize_text(references[id_val])
hypothesis = normalize_text(row["text"])
if not reference or not hypothesis:
print(f"Warning: Empty reference or hypothesis for ID {id_val}")
continue
reference_words = reference.split()
hypothesis_words = hypothesis.split()
reference_chars = list(reference)
try:
sample_wer = wer(reference, hypothesis)
sample_cer = cer(reference, hypothesis)
sample_wer = min(sample_wer, 2.0)
sample_cer = min(sample_cer, 2.0)
total_ref_words += len(reference_words)
total_ref_chars += len(reference_chars)
results.append({
"id": id_val,
"reference": reference,
"hypothesis": hypothesis,
"ref_word_count": len(reference_words),
"ref_char_count": len(reference_chars),
"wer": sample_wer,
"cer": sample_cer
})
except Exception as e:
print(f"Error calculating metrics for ID {id_val}: {str(e)}")
if not results:
raise ValueError("No valid samples for WER/CER calculation")
# Calculate standard average metrics
avg_wer = sum(item["wer"] for item in results) / len(results)
avg_cer = sum(item["cer"] for item in results) / len(results)
# Calculate weighted average metrics based on reference length
weighted_wer = sum(item["wer"] * item["ref_word_count"] for item in results) / total_ref_words
weighted_cer = sum(item["cer"] * item["ref_char_count"] for item in results) / total_ref_chars
return avg_wer, avg_cer, weighted_wer, weighted_cer, results
def update_ranking(method):
current_lb = pd.read_csv(leaderboard_file)
if "Combined_Score" not in current_lb.columns:
current_lb["Combined_Score"] = current_lb["WER"] * 0.7 + current_lb["CER"] * 0.3 # 70% for WER
if method == "WER Only":
return current_lb.sort_values("WER")
elif method == "CER Only":
return current_lb.sort_values("CER")
else: # Combined Score
return current_lb.sort_values("Combined_Score")
def process_submission(submitter_name, csv_file):
try:
df = pd.read_csv(csv_file)
print(f"Processing submission from {submitter_name} with {len(df)} rows")
if len(df) == 0:
return "Error: Uploaded CSV is empty.", None
if set(df.columns) != {"id", "text"}:
return f"Error: CSV must contain exactly 'id' and 'text' columns. Found: {', '.join(df.columns)}", None
if df["id"].duplicated().any():
dup_ids = df[df["id"].duplicated()]["id"].unique()
return f"Error: Duplicate IDs found: {', '.join(map(str, dup_ids[:5]))}", None
# Check if IDs match the reference dataset
missing_ids = set(references.keys()) - set(df["id"])
extra_ids = set(df["id"]) - set(references.keys())
if missing_ids:
return f"Error: Missing {len(missing_ids)} IDs in submission. First few missing: {', '.join(map(str, list(missing_ids)[:5]))}", None
if extra_ids:
return f"Error: Found {len(extra_ids)} extra IDs not in reference dataset. First few extra: {', '.join(map(str, list(extra_ids)[:5]))}", None
# Calculate WER and CER
try:
avg_wer, avg_cer, weighted_wer, weighted_cer, detailed_results = calculate_metrics(df)
# suspiciously low values
if avg_wer < 0.001:
return "Error: WER calculation yielded suspicious results (near-zero). Please check your submission CSV.", None
except Exception as e:
return f"Error calculating metrics: {str(e)}", None
leaderboard = pd.read_csv(leaderboard_file)
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
# (70% WER, 30% CER)
combined_score = avg_wer * 0.7 + avg_cer * 0.3
new_entry = pd.DataFrame(
[[submitter_name, avg_wer, avg_cer, combined_score, timestamp]],
columns=["submitter", "WER", "CER", "Combined_Score", "timestamp"]
)
updated_leaderboard = pd.concat([leaderboard, new_entry]).sort_values("Combined_Score")
updated_leaderboard.to_csv(leaderboard_file, index=False)
return f"Submission processed successfully! WER: {avg_wer:.4f}, CER: {avg_cer:.4f}, Combined Score: {combined_score:.4f}", updated_leaderboard
except Exception as e:
return f"Error processing submission: {str(e)}", None
with gr.Blocks(title="Bambara ASR Leaderboard") as demo:
gr.Markdown(
"""
# Bambara ASR Leaderboard
This leaderboard ranks and evaluates speech recognition models for the Bambara language.
Models are ranked based on a combined score of WER and CER metrics.
"""
)
with gr.Tabs() as tabs:
with gr.TabItem("πŸ… Current Rankings"):
current_leaderboard = pd.read_csv(leaderboard_file)
if "Combined_Score" not in current_leaderboard.columns:
current_leaderboard["Combined_Score"] = current_leaderboard["WER"] * 0.7 + current_leaderboard["CER"] * 0.3
current_leaderboard = current_leaderboard.sort_values("Combined_Score")
gr.Markdown("### Current ASR Model Rankings")
ranking_method = gr.Radio(
["Combined Score (WER 70%, CER 30%)", "WER Only", "CER Only"],
label="Ranking Method",
value="Combined Score (WER 70%, CER 30%)"
)
leaderboard_view = gr.DataFrame(
value=current_leaderboard,
interactive=False,
label="Models are ranked by selected metric - lower is better"
)
ranking_method.change(
fn=update_ranking,
inputs=[ranking_method],
outputs=[leaderboard_view]
)
gr.Markdown(
"""
## Metrics Explanation
- **WER**: Word Error Rate (lower is better) - measures word-level accuracy
- **CER**: Character Error Rate (lower is better) - measures character-level accuracy
- **Combined Score**: Weighted average of WER (70%) and CER (30%) - provides a balanced evaluation
"""
)
with gr.TabItem("πŸ“Š Submit New Results"):
gr.Markdown(
"""
### Submit a new model for evaluation
Upload a CSV file with 'id' and 'text' columns to evaluate your ASR predictions.
The 'id's must match those in the reference dataset.
"""
)
with gr.Row():
submitter = gr.Textbox(label="Submitter Name or Model Name", placeholder="e.g., MALIBA-AI/asr")
csv_upload = gr.File(label="Upload CSV File", file_types=[".csv"])
submit_btn = gr.Button("Submit")
output_msg = gr.Textbox(label="Status", interactive=False)
leaderboard_display = gr.DataFrame(
label="Updated Leaderboard",
value=current_leaderboard,
interactive=False
)
submit_btn.click(
fn=process_submission,
inputs=[submitter, csv_upload],
outputs=[output_msg, leaderboard_display]
)
print("Starting Bambara ASR Leaderboard app...")
if __name__ == "__main__":
demo.launch(share=True)