Update app.py
Browse files
app.py
CHANGED
@@ -17,18 +17,12 @@ try:
|
|
17 |
except Exception as e:
|
18 |
references = {}
|
19 |
|
20 |
-
|
21 |
leaderboard_file = "leaderboard.csv"
|
22 |
if not os.path.exists(leaderboard_file):
|
23 |
pd.DataFrame(columns=["Model_Name", "WER", "CER", "Combined_Score", "timestamp"]).to_csv(leaderboard_file, index=False)
|
24 |
else:
|
25 |
leaderboard_df = pd.read_csv(leaderboard_file)
|
26 |
|
27 |
-
|
28 |
-
# if "submitter" in leaderboard_df.columns and "Model_Name" not in leaderboard_df.columns:
|
29 |
-
# leaderboard_df = leaderboard_df.rename(columns={"submitter": "Model_Name"})
|
30 |
-
# leaderboard_df.to_csv(leaderboard_file, index=False)
|
31 |
-
|
32 |
if "Combined_Score" not in leaderboard_df.columns:
|
33 |
leaderboard_df["Combined_Score"] = leaderboard_df["WER"] * 0.7 + leaderboard_df["CER"] * 0.3
|
34 |
leaderboard_df.to_csv(leaderboard_file, index=False)
|
@@ -95,16 +89,25 @@ def calculate_metrics(predictions_df):
|
|
95 |
if not results:
|
96 |
raise ValueError("No valid samples for WER/CER calculation")
|
97 |
|
98 |
-
|
99 |
avg_wer = sum(item["wer"] for item in results) / len(results)
|
100 |
avg_cer = sum(item["cer"] for item in results) / len(results)
|
101 |
|
102 |
-
# Calculate weighted average metrics based on reference length
|
103 |
weighted_wer = sum(item["wer"] * item["ref_word_count"] for item in results) / total_ref_words
|
104 |
weighted_cer = sum(item["cer"] * item["ref_char_count"] for item in results) / total_ref_chars
|
105 |
|
106 |
return avg_wer, avg_cer, weighted_wer, weighted_cer, results
|
107 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
def update_ranking(method):
|
109 |
"""Update leaderboard ranking based on selected method"""
|
110 |
try:
|
@@ -113,14 +116,16 @@ def update_ranking(method):
|
|
113 |
if "Combined_Score" not in current_lb.columns:
|
114 |
current_lb["Combined_Score"] = current_lb["WER"] * 0.7 + current_lb["CER"] * 0.3
|
115 |
|
|
|
116 |
if method == "WER Only":
|
117 |
-
|
118 |
elif method == "CER Only":
|
119 |
-
|
120 |
-
|
121 |
-
|
|
|
122 |
except Exception:
|
123 |
-
return pd.DataFrame(columns=["Model_Name", "WER", "CER", "Combined_Score", "timestamp"])
|
124 |
|
125 |
def process_submission(model_name, csv_file):
|
126 |
try:
|
@@ -136,7 +141,6 @@ def process_submission(model_name, csv_file):
|
|
136 |
dup_ids = df[df["id"].duplicated()]["id"].unique()
|
137 |
return f"Error: Duplicate IDs found: {', '.join(map(str, dup_ids[:5]))}", None
|
138 |
|
139 |
-
|
140 |
missing_ids = set(references.keys()) - set(df["id"])
|
141 |
extra_ids = set(df["id"]) - set(references.keys())
|
142 |
|
@@ -146,7 +150,6 @@ def process_submission(model_name, csv_file):
|
|
146 |
if extra_ids:
|
147 |
return f"Error: Found {len(extra_ids)} extra IDs not in reference dataset. First few extra: {', '.join(map(str, list(extra_ids)[:5]))}", None
|
148 |
|
149 |
-
|
150 |
try:
|
151 |
avg_wer, avg_cer, weighted_wer, weighted_cer, detailed_results = calculate_metrics(df)
|
152 |
|
@@ -160,7 +163,6 @@ def process_submission(model_name, csv_file):
|
|
160 |
leaderboard = pd.read_csv(leaderboard_file)
|
161 |
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
162 |
|
163 |
-
# Calculate combined score (70% WER, 30% CER)
|
164 |
combined_score = avg_wer * 0.7 + avg_cer * 0.3
|
165 |
|
166 |
new_entry = pd.DataFrame(
|
@@ -168,10 +170,13 @@ def process_submission(model_name, csv_file):
|
|
168 |
columns=["Model_Name", "WER", "CER", "Combined_Score", "timestamp"]
|
169 |
)
|
170 |
|
|
|
171 |
updated_leaderboard = pd.concat([leaderboard, new_entry]).sort_values("Combined_Score")
|
172 |
updated_leaderboard.to_csv(leaderboard_file, index=False)
|
173 |
|
174 |
-
|
|
|
|
|
175 |
|
176 |
except Exception as e:
|
177 |
return f"Error processing submission: {str(e)}", None
|
@@ -194,9 +199,10 @@ with gr.Blocks(title="Bambara ASR Leaderboard") as demo:
|
|
194 |
if "Combined_Score" not in current_leaderboard.columns:
|
195 |
current_leaderboard["Combined_Score"] = current_leaderboard["WER"] * 0.7 + current_leaderboard["CER"] * 0.3
|
196 |
|
197 |
-
|
|
|
198 |
except Exception:
|
199 |
-
current_leaderboard = pd.DataFrame(columns=["Model_Name", "WER", "CER", "Combined_Score", "timestamp"])
|
200 |
|
201 |
gr.Markdown("### Current ASR Model Rankings")
|
202 |
|
@@ -256,4 +262,4 @@ with gr.Blocks(title="Bambara ASR Leaderboard") as demo:
|
|
256 |
)
|
257 |
|
258 |
if __name__ == "__main__":
|
259 |
-
demo.launch(
|
|
|
17 |
except Exception as e:
|
18 |
references = {}
|
19 |
|
|
|
20 |
leaderboard_file = "leaderboard.csv"
|
21 |
if not os.path.exists(leaderboard_file):
|
22 |
pd.DataFrame(columns=["Model_Name", "WER", "CER", "Combined_Score", "timestamp"]).to_csv(leaderboard_file, index=False)
|
23 |
else:
|
24 |
leaderboard_df = pd.read_csv(leaderboard_file)
|
25 |
|
|
|
|
|
|
|
|
|
|
|
26 |
if "Combined_Score" not in leaderboard_df.columns:
|
27 |
leaderboard_df["Combined_Score"] = leaderboard_df["WER"] * 0.7 + leaderboard_df["CER"] * 0.3
|
28 |
leaderboard_df.to_csv(leaderboard_file, index=False)
|
|
|
89 |
if not results:
|
90 |
raise ValueError("No valid samples for WER/CER calculation")
|
91 |
|
|
|
92 |
avg_wer = sum(item["wer"] for item in results) / len(results)
|
93 |
avg_cer = sum(item["cer"] for item in results) / len(results)
|
94 |
|
|
|
95 |
weighted_wer = sum(item["wer"] * item["ref_word_count"] for item in results) / total_ref_words
|
96 |
weighted_cer = sum(item["cer"] * item["ref_char_count"] for item in results) / total_ref_chars
|
97 |
|
98 |
return avg_wer, avg_cer, weighted_wer, weighted_cer, results
|
99 |
|
100 |
+
def add_ranking_numbers(df, sort_by="Combined_Score"):
|
101 |
+
"""Add ranking numbers to the dataframe based on the sort column"""
|
102 |
+
if len(df) == 0:
|
103 |
+
return pd.DataFrame(columns=["Rank"] + list(df.columns))
|
104 |
+
|
105 |
+
|
106 |
+
sorted_df = df.sort_values(sort_by)
|
107 |
+
sorted_df.insert(0, "Rank", range(1, len(sorted_df) + 1))
|
108 |
+
|
109 |
+
return sorted_df
|
110 |
+
|
111 |
def update_ranking(method):
|
112 |
"""Update leaderboard ranking based on selected method"""
|
113 |
try:
|
|
|
116 |
if "Combined_Score" not in current_lb.columns:
|
117 |
current_lb["Combined_Score"] = current_lb["WER"] * 0.7 + current_lb["CER"] * 0.3
|
118 |
|
119 |
+
sort_column = "Combined_Score"
|
120 |
if method == "WER Only":
|
121 |
+
sort_column = "WER"
|
122 |
elif method == "CER Only":
|
123 |
+
sort_column = "CER"
|
124 |
+
|
125 |
+
return add_ranking_numbers(current_lb, sort_column)
|
126 |
+
|
127 |
except Exception:
|
128 |
+
return pd.DataFrame(columns=["Rank", "Model_Name", "WER", "CER", "Combined_Score", "timestamp"])
|
129 |
|
130 |
def process_submission(model_name, csv_file):
|
131 |
try:
|
|
|
141 |
dup_ids = df[df["id"].duplicated()]["id"].unique()
|
142 |
return f"Error: Duplicate IDs found: {', '.join(map(str, dup_ids[:5]))}", None
|
143 |
|
|
|
144 |
missing_ids = set(references.keys()) - set(df["id"])
|
145 |
extra_ids = set(df["id"]) - set(references.keys())
|
146 |
|
|
|
150 |
if extra_ids:
|
151 |
return f"Error: Found {len(extra_ids)} extra IDs not in reference dataset. First few extra: {', '.join(map(str, list(extra_ids)[:5]))}", None
|
152 |
|
|
|
153 |
try:
|
154 |
avg_wer, avg_cer, weighted_wer, weighted_cer, detailed_results = calculate_metrics(df)
|
155 |
|
|
|
163 |
leaderboard = pd.read_csv(leaderboard_file)
|
164 |
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
165 |
|
|
|
166 |
combined_score = avg_wer * 0.7 + avg_cer * 0.3
|
167 |
|
168 |
new_entry = pd.DataFrame(
|
|
|
170 |
columns=["Model_Name", "WER", "CER", "Combined_Score", "timestamp"]
|
171 |
)
|
172 |
|
173 |
+
|
174 |
updated_leaderboard = pd.concat([leaderboard, new_entry]).sort_values("Combined_Score")
|
175 |
updated_leaderboard.to_csv(leaderboard_file, index=False)
|
176 |
|
177 |
+
ranked_leaderboard = add_ranking_numbers(updated_leaderboard)
|
178 |
+
|
179 |
+
return f"Submission processed successfully! WER: {avg_wer:.4f}, CER: {avg_cer:.4f}, Combined Score: {combined_score:.4f}", ranked_leaderboard
|
180 |
|
181 |
except Exception as e:
|
182 |
return f"Error processing submission: {str(e)}", None
|
|
|
199 |
if "Combined_Score" not in current_leaderboard.columns:
|
200 |
current_leaderboard["Combined_Score"] = current_leaderboard["WER"] * 0.7 + current_leaderboard["CER"] * 0.3
|
201 |
|
202 |
+
|
203 |
+
current_leaderboard = add_ranking_numbers(current_leaderboard.sort_values("Combined_Score"))
|
204 |
except Exception:
|
205 |
+
current_leaderboard = pd.DataFrame(columns=["Rank", "Model_Name", "WER", "CER", "Combined_Score", "timestamp"])
|
206 |
|
207 |
gr.Markdown("### Current ASR Model Rankings")
|
208 |
|
|
|
262 |
)
|
263 |
|
264 |
if __name__ == "__main__":
|
265 |
+
demo.launch()
|