Update app.py
Browse files
app.py
CHANGED
@@ -37,12 +37,36 @@ except Exception as e:
|
|
37 |
references = {}
|
38 |
print("WARNING: Using empty references dictionary due to dataset loading error")
|
39 |
|
40 |
-
# Initialize leaderboard file
|
41 |
leaderboard_file = "leaderboard.csv"
|
42 |
if not os.path.exists(leaderboard_file):
|
43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
else:
|
45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
def normalize_text(text):
|
48 |
"""
|
@@ -147,6 +171,21 @@ def calculate_metrics(predictions_df):
|
|
147 |
|
148 |
return avg_wer, avg_cer, weighted_wer, weighted_cer, results
|
149 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
150 |
def process_submission(submitter_name, csv_file):
|
151 |
try:
|
152 |
# Read and validate the uploaded CSV
|
@@ -194,14 +233,20 @@ def process_submission(submitter_name, csv_file):
|
|
194 |
# Update the leaderboard
|
195 |
leaderboard = pd.read_csv(leaderboard_file)
|
196 |
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
|
|
|
|
|
|
|
|
197 |
new_entry = pd.DataFrame(
|
198 |
-
[[submitter_name, avg_wer, avg_cer, timestamp]],
|
199 |
-
columns=["submitter", "WER", "CER", "timestamp"]
|
200 |
)
|
201 |
-
leaderboard = pd.concat([leaderboard, new_entry]).sort_values("WER")
|
202 |
-
leaderboard.to_csv(leaderboard_file, index=False)
|
203 |
|
204 |
-
|
|
|
|
|
|
|
|
|
205 |
|
206 |
except Exception as e:
|
207 |
print(f"Error processing submission: {str(e)}")
|
@@ -214,7 +259,7 @@ with gr.Blocks(title="Bambara ASR Leaderboard") as demo:
|
|
214 |
# Bambara ASR Leaderboard
|
215 |
|
216 |
This leaderboard ranks and evaluates speech recognition models for the Bambara language.
|
217 |
-
Models are ranked based on
|
218 |
"""
|
219 |
)
|
220 |
|
@@ -222,13 +267,35 @@ with gr.Blocks(title="Bambara ASR Leaderboard") as demo:
|
|
222 |
with gr.Tabs() as tabs:
|
223 |
with gr.TabItem("π
Current Rankings"):
|
224 |
# Show current leaderboard rankings
|
225 |
-
current_leaderboard = pd.read_csv(leaderboard_file)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
226 |
|
227 |
gr.Markdown("### Current ASR Model Rankings")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
228 |
leaderboard_view = gr.DataFrame(
|
229 |
value=current_leaderboard,
|
230 |
interactive=False,
|
231 |
-
label="Models are ranked by
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
232 |
)
|
233 |
|
234 |
gr.Markdown(
|
@@ -236,6 +303,7 @@ with gr.Blocks(title="Bambara ASR Leaderboard") as demo:
|
|
236 |
## Metrics Explanation
|
237 |
- **WER**: Word Error Rate (lower is better) - measures word-level accuracy
|
238 |
- **CER**: Character Error Rate (lower is better) - measures character-level accuracy
|
|
|
239 |
"""
|
240 |
)
|
241 |
|
|
|
37 |
references = {}
|
38 |
print("WARNING: Using empty references dictionary due to dataset loading error")
|
39 |
|
40 |
+
# Initialize leaderboard file with combined score
|
41 |
leaderboard_file = "leaderboard.csv"
|
42 |
if not os.path.exists(leaderboard_file):
|
43 |
+
# Create empty leaderboard with necessary columns
|
44 |
+
pd.DataFrame(columns=["submitter", "WER", "CER", "Combined_Score", "timestamp"]).to_csv(leaderboard_file, index=False)
|
45 |
+
print("Created new leaderboard file")
|
46 |
+
|
47 |
+
# Add example entries so first-time visitors see something
|
48 |
+
example_data = [
|
49 |
+
["Example Model 1", 0.35, 0.20, 0.305, "2023-01-01 00:00:00"],
|
50 |
+
["Example Model 2", 0.40, 0.18, 0.334, "2023-01-02 00:00:00"],
|
51 |
+
["Example Model 3", 0.32, 0.25, 0.299, "2023-01-03 00:00:00"]
|
52 |
+
]
|
53 |
+
example_df = pd.DataFrame(
|
54 |
+
example_data,
|
55 |
+
columns=["submitter", "WER", "CER", "Combined_Score", "timestamp"]
|
56 |
+
)
|
57 |
+
example_df.to_csv(leaderboard_file, index=False)
|
58 |
+
print("Added example data to empty leaderboard for demonstration")
|
59 |
else:
|
60 |
+
# Load existing leaderboard
|
61 |
+
leaderboard_df = pd.read_csv(leaderboard_file)
|
62 |
+
|
63 |
+
# Add Combined_Score column if it doesn't exist
|
64 |
+
if "Combined_Score" not in leaderboard_df.columns:
|
65 |
+
leaderboard_df["Combined_Score"] = leaderboard_df["WER"] * 0.7 + leaderboard_df["CER"] * 0.3
|
66 |
+
leaderboard_df.to_csv(leaderboard_file, index=False)
|
67 |
+
print("Added Combined_Score column to existing leaderboard")
|
68 |
+
|
69 |
+
print(f"Loaded existing leaderboard with {len(leaderboard_df)} entries")
|
70 |
|
71 |
def normalize_text(text):
|
72 |
"""
|
|
|
171 |
|
172 |
return avg_wer, avg_cer, weighted_wer, weighted_cer, results
|
173 |
|
174 |
+
def update_ranking(method):
|
175 |
+
"""Update leaderboard ranking based on selected method"""
|
176 |
+
current_lb = pd.read_csv(leaderboard_file)
|
177 |
+
|
178 |
+
# Calculate combined score if not present
|
179 |
+
if "Combined_Score" not in current_lb.columns:
|
180 |
+
current_lb["Combined_Score"] = current_lb["WER"] * 0.7 + current_lb["CER"] * 0.3
|
181 |
+
|
182 |
+
if method == "WER Only":
|
183 |
+
return current_lb.sort_values("WER")
|
184 |
+
elif method == "CER Only":
|
185 |
+
return current_lb.sort_values("CER")
|
186 |
+
else: # Combined Score
|
187 |
+
return current_lb.sort_values("Combined_Score")
|
188 |
+
|
189 |
def process_submission(submitter_name, csv_file):
|
190 |
try:
|
191 |
# Read and validate the uploaded CSV
|
|
|
233 |
# Update the leaderboard
|
234 |
leaderboard = pd.read_csv(leaderboard_file)
|
235 |
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
236 |
+
|
237 |
+
# Calculate combined score (70% WER, 30% CER)
|
238 |
+
combined_score = avg_wer * 0.7 + avg_cer * 0.3
|
239 |
+
|
240 |
new_entry = pd.DataFrame(
|
241 |
+
[[submitter_name, avg_wer, avg_cer, combined_score, timestamp]],
|
242 |
+
columns=["submitter", "WER", "CER", "Combined_Score", "timestamp"]
|
243 |
)
|
|
|
|
|
244 |
|
245 |
+
# Add new entry to leaderboard
|
246 |
+
updated_leaderboard = pd.concat([leaderboard, new_entry]).sort_values("Combined_Score")
|
247 |
+
updated_leaderboard.to_csv(leaderboard_file, index=False)
|
248 |
+
|
249 |
+
return f"Submission processed successfully! WER: {avg_wer:.4f}, CER: {avg_cer:.4f}, Combined Score: {combined_score:.4f}", updated_leaderboard
|
250 |
|
251 |
except Exception as e:
|
252 |
print(f"Error processing submission: {str(e)}")
|
|
|
259 |
# Bambara ASR Leaderboard
|
260 |
|
261 |
This leaderboard ranks and evaluates speech recognition models for the Bambara language.
|
262 |
+
Models are ranked based on a combined score of WER and CER metrics.
|
263 |
"""
|
264 |
)
|
265 |
|
|
|
267 |
with gr.Tabs() as tabs:
|
268 |
with gr.TabItem("π
Current Rankings"):
|
269 |
# Show current leaderboard rankings
|
270 |
+
current_leaderboard = pd.read_csv(leaderboard_file)
|
271 |
+
|
272 |
+
# Calculate combined score if not present
|
273 |
+
if "Combined_Score" not in current_leaderboard.columns:
|
274 |
+
current_leaderboard["Combined_Score"] = current_leaderboard["WER"] * 0.7 + current_leaderboard["CER"] * 0.3
|
275 |
+
|
276 |
+
# Sort by combined score
|
277 |
+
current_leaderboard = current_leaderboard.sort_values("Combined_Score")
|
278 |
|
279 |
gr.Markdown("### Current ASR Model Rankings")
|
280 |
+
|
281 |
+
# Add radio buttons for ranking method
|
282 |
+
ranking_method = gr.Radio(
|
283 |
+
["Combined Score (WER 70%, CER 30%)", "WER Only", "CER Only"],
|
284 |
+
label="Ranking Method",
|
285 |
+
value="Combined Score (WER 70%, CER 30%)"
|
286 |
+
)
|
287 |
+
|
288 |
leaderboard_view = gr.DataFrame(
|
289 |
value=current_leaderboard,
|
290 |
interactive=False,
|
291 |
+
label="Models are ranked by selected metric - lower is better"
|
292 |
+
)
|
293 |
+
|
294 |
+
# Update leaderboard based on ranking method selection
|
295 |
+
ranking_method.change(
|
296 |
+
fn=update_ranking,
|
297 |
+
inputs=[ranking_method],
|
298 |
+
outputs=[leaderboard_view]
|
299 |
)
|
300 |
|
301 |
gr.Markdown(
|
|
|
303 |
## Metrics Explanation
|
304 |
- **WER**: Word Error Rate (lower is better) - measures word-level accuracy
|
305 |
- **CER**: Character Error Rate (lower is better) - measures character-level accuracy
|
306 |
+
- **Combined Score**: Weighted average of WER (70%) and CER (30%) - provides a balanced evaluation
|
307 |
"""
|
308 |
)
|
309 |
|