Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pandas as pd
|
3 |
+
from datasets import load_dataset
|
4 |
+
from jiwer import wer, cer, transforms
|
5 |
+
import os
|
6 |
+
from datetime import datetime
|
7 |
+
|
8 |
+
|
9 |
+
transform = transforms.Compose([
|
10 |
+
transforms.RemovePunctuation(),
|
11 |
+
transforms.ToLowerCase(),
|
12 |
+
transforms.RemoveWhiteSpace(replace_by_space=True),
|
13 |
+
])
|
14 |
+
|
15 |
+
|
16 |
+
dataset = load_dataset("sudoping01/bambara-asr-benchmark", name="default")["train"]
|
17 |
+
references = {row["id"]: row["text"] for row in dataset}
|
18 |
+
|
19 |
+
|
20 |
+
leaderboard_file = "leaderboard.csv"
|
21 |
+
if not os.path.exists(leaderboard_file):
|
22 |
+
pd.DataFrame(columns=["submitter", "WER", "CER", "timestamp"]).to_csv(leaderboard_file, index=False)
|
23 |
+
|
24 |
+
def process_submission(submitter_name, csv_file):
|
25 |
+
|
26 |
+
try:
|
27 |
+
# Read and validate the uploaded CSV
|
28 |
+
df = pd.read_csv(csv_file)
|
29 |
+
if set(df.columns) != {"id", "prediction"}:
|
30 |
+
return "Error: CSV must contain exactly 'id' and 'prediction' columns.", None
|
31 |
+
if df["id"].duplicated().any():
|
32 |
+
return "Error: Duplicate 'id's found in the CSV.", None
|
33 |
+
if set(df["id"]) != set(references.keys()):
|
34 |
+
return "Error: CSV 'id's must match the dataset 'id's.", None
|
35 |
+
|
36 |
+
# Calculate WER and CER for each prediction
|
37 |
+
wers, cers = [], []
|
38 |
+
for _, row in df.iterrows():
|
39 |
+
ref = references[row["id"]]
|
40 |
+
pred = row["prediction"]
|
41 |
+
wers.append(wer(ref, pred, standardize=transform))
|
42 |
+
cers.append(cer(ref, pred, standardize=transform))
|
43 |
+
|
44 |
+
# Compute average WER and CER
|
45 |
+
avg_wer = sum(wers) / len(wers)
|
46 |
+
avg_cer = sum(cers) / len(cers)
|
47 |
+
|
48 |
+
# Update the leaderboard
|
49 |
+
leaderboard = pd.read_csv(leaderboard_file)
|
50 |
+
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
51 |
+
new_entry = pd.DataFrame(
|
52 |
+
[[submitter_name, avg_wer, avg_cer, timestamp]],
|
53 |
+
columns=["submitter", "WER", "CER", "timestamp"]
|
54 |
+
)
|
55 |
+
leaderboard = pd.concat([leaderboard, new_entry]).sort_values("WER")
|
56 |
+
leaderboard.to_csv(leaderboard_file, index=False)
|
57 |
+
|
58 |
+
return "Submission processed successfully!", leaderboard
|
59 |
+
except Exception as e:
|
60 |
+
return f"Error processing submission: {str(e)}", None
|
61 |
+
|
62 |
+
# Create the Gradio interface
|
63 |
+
with gr.Blocks(title="Bambara ASR Leaderboard") as demo:
|
64 |
+
gr.Markdown(
|
65 |
+
"""
|
66 |
+
# Bambara ASR Leaderboard
|
67 |
+
Upload a CSV file with 'id' and 'text' columns to evaluate your ASR predictions.
|
68 |
+
The 'id's must match those in the dataset.
|
69 |
+
[View the dataset here](https://huggingface.co/datasets/MALIBA-AI/bambara_general_leaderboard_dataset).
|
70 |
+
|
71 |
+
- **WER**: Word Error Rate (lower is better).
|
72 |
+
- **CER**: Character Error Rate (lower is better).
|
73 |
+
"""
|
74 |
+
)
|
75 |
+
with gr.Row():
|
76 |
+
submitter = gr.Textbox(label="Submitter Name or Model Name", placeholder="e.g., MALIBA-AI/asr")
|
77 |
+
csv_upload = gr.File(label="Upload CSV File", file_types=[".csv"])
|
78 |
+
submit_btn = gr.Button("Submit")
|
79 |
+
output_msg = gr.Textbox(label="Status", interactive=False)
|
80 |
+
leaderboard_display = gr.DataFrame(
|
81 |
+
label="Leaderboard",
|
82 |
+
value=pd.read_csv(leaderboard_file),
|
83 |
+
interactive=False
|
84 |
+
)
|
85 |
+
|
86 |
+
submit_btn.click(
|
87 |
+
fn=process_submission,
|
88 |
+
inputs=[submitter, csv_upload],
|
89 |
+
outputs=[output_msg, leaderboard_display]
|
90 |
+
)
|
91 |
+
|
92 |
+
demo.launch()
|