Update app.py
Browse filesredefine based on open asr leaderboard package
app.py
CHANGED
@@ -8,46 +8,59 @@ import re
|
|
8 |
|
9 |
from huggingface_hub import login
|
10 |
|
|
|
11 |
token = os.environ.get("HG_TOKEN")
|
12 |
-
|
|
|
|
|
|
|
13 |
login(token)
|
14 |
|
15 |
print("Loading dataset...")
|
16 |
-
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
|
|
19 |
leaderboard_file = "leaderboard.csv"
|
20 |
if not os.path.exists(leaderboard_file):
|
21 |
-
pd.DataFrame(columns=["submitter", "WER", "CER", "timestamp"]).to_csv(leaderboard_file, index=False)
|
22 |
else:
|
23 |
print(f"Loaded existing leaderboard with {len(pd.read_csv(leaderboard_file))} entries")
|
24 |
|
25 |
def normalize_text(text):
|
26 |
"""
|
27 |
-
Normalize text
|
28 |
-
- Convert to lowercase
|
29 |
-
- Remove punctuation
|
30 |
-
- Replace multiple spaces with single space
|
31 |
-
- Strip leading/trailing spaces
|
32 |
"""
|
33 |
if not isinstance(text, str):
|
34 |
text = str(text)
|
35 |
|
36 |
-
# Convert to lowercase
|
37 |
text = text.lower()
|
38 |
|
39 |
-
#
|
40 |
-
|
41 |
|
42 |
-
#
|
43 |
-
|
44 |
|
45 |
return text
|
46 |
|
47 |
def calculate_metrics(predictions_df):
|
48 |
-
"""
|
49 |
-
|
|
|
|
|
|
|
|
|
|
|
50 |
|
|
|
51 |
for _, row in predictions_df.iterrows():
|
52 |
id_val = row["id"]
|
53 |
if id_val not in references:
|
@@ -57,146 +70,262 @@ def calculate_metrics(predictions_df):
|
|
57 |
reference = normalize_text(references[id_val])
|
58 |
hypothesis = normalize_text(row["text"])
|
59 |
|
60 |
-
# Print detailed info for first few entries
|
61 |
-
if len(results) < 5:
|
62 |
-
print(f"ID: {id_val}")
|
63 |
-
print(f"Reference: '{reference}'")
|
64 |
-
print(f"Hypothesis: '{hypothesis}'")
|
65 |
-
|
66 |
-
# Skip empty strings
|
67 |
if not reference or not hypothesis:
|
68 |
print(f"Warning: Empty reference or hypothesis for ID {id_val}")
|
69 |
continue
|
70 |
|
71 |
-
# Split into words for jiwer
|
72 |
reference_words = reference.split()
|
73 |
-
|
|
|
|
|
|
|
|
|
|
|
74 |
|
75 |
-
|
|
|
|
|
|
|
|
|
76 |
print(f"Reference words: {reference_words}")
|
77 |
-
print(f"Hypothesis words: {hypothesis_words}")
|
78 |
|
79 |
-
# Calculate metrics
|
80 |
try:
|
81 |
-
# Make sure we're not comparing identical strings
|
82 |
-
if reference == hypothesis:
|
83 |
-
print(f"Warning: Identical strings for ID {id_val}")
|
84 |
-
# Force a small difference if the strings are identical
|
85 |
-
# This is for debugging - remove in production if needed
|
86 |
-
if len(hypothesis_words) > 0:
|
87 |
-
# Add a dummy word to force non-zero WER
|
88 |
-
hypothesis_words.append("dummy_debug_token")
|
89 |
-
hypothesis = " ".join(hypothesis_words)
|
90 |
-
|
91 |
# Calculate WER and CER
|
92 |
sample_wer = wer(reference, hypothesis)
|
93 |
sample_cer = cer(reference, hypothesis)
|
94 |
|
95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
print(f"WER: {sample_wer}, CER: {sample_cer}")
|
97 |
-
|
98 |
-
|
99 |
"id": id_val,
|
100 |
"reference": reference,
|
101 |
"hypothesis": hypothesis,
|
|
|
|
|
102 |
"wer": sample_wer,
|
103 |
"cer": sample_cer
|
104 |
})
|
105 |
except Exception as e:
|
106 |
print(f"Error calculating metrics for ID {id_val}: {str(e)}")
|
107 |
|
108 |
-
if not
|
109 |
raise ValueError("No valid samples for WER/CER calculation")
|
110 |
-
|
111 |
-
# Calculate average metrics
|
112 |
-
avg_wer = sum(item["wer"] for item in results) / len(results)
|
113 |
-
avg_cer = sum(item["cer"] for item in results) / len(results)
|
114 |
|
115 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
|
117 |
def process_submission(submitter_name, csv_file):
|
|
|
|
|
|
|
|
|
118 |
try:
|
|
|
|
|
|
|
|
|
119 |
# Read and validate the uploaded CSV
|
120 |
df = pd.read_csv(csv_file)
|
121 |
print(f"Processing submission from {submitter_name} with {len(df)} rows")
|
122 |
|
|
|
123 |
if len(df) == 0:
|
124 |
-
return "Error: Uploaded CSV is empty.", None
|
|
|
|
|
|
|
125 |
|
126 |
if set(df.columns) != {"id", "text"}:
|
127 |
-
return f"Error: CSV must contain exactly 'id' and 'text' columns. Found: {', '.join(df.columns)}", None
|
128 |
|
129 |
if df["id"].duplicated().any():
|
130 |
dup_ids = df[df["id"].duplicated()]["id"].unique()
|
131 |
-
return f"Error: Duplicate IDs found: {', '.join(map(str, dup_ids[:5]))}", None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
|
133 |
# Check if IDs match the reference dataset
|
134 |
missing_ids = set(references.keys()) - set(df["id"])
|
135 |
extra_ids = set(df["id"]) - set(references.keys())
|
136 |
|
137 |
if missing_ids:
|
138 |
-
return f"Error: Missing {len(missing_ids)} IDs in submission. First few missing: {', '.join(map(str, list(missing_ids)[:5]))}", None
|
139 |
|
140 |
if extra_ids:
|
141 |
-
return f"Error: Found {len(extra_ids)} extra IDs not in reference dataset. First few extra: {', '.join(map(str, list(extra_ids)[:5]))}", None
|
|
|
|
|
|
|
|
|
|
|
|
|
142 |
|
143 |
-
|
|
|
|
|
|
|
|
|
144 |
try:
|
145 |
-
avg_wer, avg_cer, detailed_results = calculate_metrics(df)
|
146 |
|
147 |
# Debug information
|
148 |
print(f"Calculated metrics - WER: {avg_wer:.4f}, CER: {avg_cer:.4f}")
|
|
|
149 |
print(f"Processed {len(detailed_results)} valid samples")
|
150 |
|
151 |
# Check for suspiciously low values
|
152 |
-
if avg_wer < 0.001:
|
153 |
print("WARNING: WER is extremely low - likely an error")
|
154 |
-
return "Error: WER calculation yielded suspicious results (near-zero). Please check your submission CSV.", None
|
155 |
|
156 |
except Exception as e:
|
157 |
print(f"Error in metrics calculation: {str(e)}")
|
158 |
-
return f"Error calculating metrics: {str(e)}", None
|
159 |
|
160 |
# Update the leaderboard
|
161 |
leaderboard = pd.read_csv(leaderboard_file)
|
162 |
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
|
|
163 |
new_entry = pd.DataFrame(
|
164 |
-
[[submitter_name, avg_wer, avg_cer, timestamp]],
|
165 |
-
columns=["submitter", "WER", "CER", "timestamp"]
|
166 |
)
|
167 |
-
leaderboard = pd.concat([leaderboard, new_entry]).sort_values("WER")
|
168 |
-
leaderboard.to_csv(leaderboard_file, index=False)
|
169 |
|
170 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
171 |
|
172 |
except Exception as e:
|
173 |
print(f"Error processing submission: {str(e)}")
|
174 |
-
return f"Error processing submission: {str(e)}", None
|
175 |
|
176 |
# Create the Gradio interface
|
177 |
with gr.Blocks(title="Bambara ASR Leaderboard") as demo:
|
178 |
gr.Markdown(
|
179 |
"""
|
180 |
# Bambara ASR Leaderboard
|
|
|
181 |
Upload a CSV file with 'id' and 'text' columns to evaluate your ASR predictions.
|
182 |
The 'id's must match those in the dataset.
|
183 |
-
|
184 |
-
|
185 |
-
- **
|
|
|
|
|
|
|
186 |
"""
|
187 |
)
|
188 |
|
189 |
with gr.Row():
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
200 |
|
201 |
submit_btn.click(
|
202 |
fn=process_submission,
|
|
|
8 |
|
9 |
from huggingface_hub import login
|
10 |
|
11 |
+
# Authentication setup
|
12 |
token = os.environ.get("HG_TOKEN")
|
13 |
+
print(f"Token exists: {token is not None}")
|
14 |
+
if token:
|
15 |
+
print(f"Token length: {len(token)}")
|
16 |
+
print(f"Token first few chars: {token[:4]}...")
|
17 |
login(token)
|
18 |
|
19 |
print("Loading dataset...")
|
20 |
+
try:
|
21 |
+
dataset = load_dataset("sudoping01/bambara-speech-recognition-benchmark", name="default", use_auth_token=token)["eval"]
|
22 |
+
print(f"Successfully loaded dataset with {len(dataset)} samples")
|
23 |
+
references = {row["id"]: row["text"] for row in dataset}
|
24 |
+
except Exception as e:
|
25 |
+
print(f"Error loading dataset: {str(e)}")
|
26 |
+
# Fallback in case dataset can't be loaded
|
27 |
+
references = {}
|
28 |
+
print("WARNING: Using empty references dictionary due to dataset loading error")
|
29 |
|
30 |
+
# Initialize leaderboard file
|
31 |
leaderboard_file = "leaderboard.csv"
|
32 |
if not os.path.exists(leaderboard_file):
|
33 |
+
pd.DataFrame(columns=["submitter", "WER", "CER", "weighted_WER", "weighted_CER", "samples_evaluated", "timestamp"]).to_csv(leaderboard_file, index=False)
|
34 |
else:
|
35 |
print(f"Loaded existing leaderboard with {len(pd.read_csv(leaderboard_file))} entries")
|
36 |
|
37 |
def normalize_text(text):
|
38 |
"""
|
39 |
+
Normalize text by converting to lowercase, removing punctuation, and normalizing whitespace.
|
|
|
|
|
|
|
|
|
40 |
"""
|
41 |
if not isinstance(text, str):
|
42 |
text = str(text)
|
43 |
|
|
|
44 |
text = text.lower()
|
45 |
|
46 |
+
# Remove punctuation, keeping spaces
|
47 |
+
text = re.sub(r'[^\w\s]', '', text)
|
48 |
|
49 |
+
# Normalize whitespace
|
50 |
+
text = re.sub(r'\s+', ' ', text).strip()
|
51 |
|
52 |
return text
|
53 |
|
54 |
def calculate_metrics(predictions_df):
|
55 |
+
"""
|
56 |
+
Calculate WER and CER for each sample and return averages and per-sample results.
|
57 |
+
Uses both standard average and length-weighted average.
|
58 |
+
"""
|
59 |
+
per_sample_metrics = []
|
60 |
+
total_ref_words = 0
|
61 |
+
total_ref_chars = 0
|
62 |
|
63 |
+
# Process each sample
|
64 |
for _, row in predictions_df.iterrows():
|
65 |
id_val = row["id"]
|
66 |
if id_val not in references:
|
|
|
70 |
reference = normalize_text(references[id_val])
|
71 |
hypothesis = normalize_text(row["text"])
|
72 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
if not reference or not hypothesis:
|
74 |
print(f"Warning: Empty reference or hypothesis for ID {id_val}")
|
75 |
continue
|
76 |
|
|
|
77 |
reference_words = reference.split()
|
78 |
+
reference_chars = list(reference)
|
79 |
+
|
80 |
+
# Skip very short references for more stable metrics
|
81 |
+
if len(reference_words) < 2:
|
82 |
+
print(f"Warning: Reference too short for ID {id_val}, skipping")
|
83 |
+
continue
|
84 |
|
85 |
+
# Store sample info for debugging (first few samples)
|
86 |
+
if len(per_sample_metrics) < 5:
|
87 |
+
print(f"ID: {id_val}")
|
88 |
+
print(f"Reference: '{reference}'")
|
89 |
+
print(f"Hypothesis: '{hypothesis}'")
|
90 |
print(f"Reference words: {reference_words}")
|
|
|
91 |
|
|
|
92 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
# Calculate WER and CER
|
94 |
sample_wer = wer(reference, hypothesis)
|
95 |
sample_cer = cer(reference, hypothesis)
|
96 |
|
97 |
+
# Cap metrics at sensible values to prevent outliers
|
98 |
+
sample_wer = min(sample_wer, 2.0) # Cap at 200% WER
|
99 |
+
sample_cer = min(sample_cer, 2.0) # Cap at 200% CER
|
100 |
+
|
101 |
+
# For weighted calculations
|
102 |
+
total_ref_words += len(reference_words)
|
103 |
+
total_ref_chars += len(reference_chars)
|
104 |
+
|
105 |
+
if len(per_sample_metrics) < 5:
|
106 |
print(f"WER: {sample_wer}, CER: {sample_cer}")
|
107 |
+
|
108 |
+
per_sample_metrics.append({
|
109 |
"id": id_val,
|
110 |
"reference": reference,
|
111 |
"hypothesis": hypothesis,
|
112 |
+
"ref_word_count": len(reference_words),
|
113 |
+
"ref_char_count": len(reference_chars),
|
114 |
"wer": sample_wer,
|
115 |
"cer": sample_cer
|
116 |
})
|
117 |
except Exception as e:
|
118 |
print(f"Error calculating metrics for ID {id_val}: {str(e)}")
|
119 |
|
120 |
+
if not per_sample_metrics:
|
121 |
raise ValueError("No valid samples for WER/CER calculation")
|
|
|
|
|
|
|
|
|
122 |
|
123 |
+
# Calculate standard average metrics
|
124 |
+
avg_wer = sum(item["wer"] for item in per_sample_metrics) / len(per_sample_metrics)
|
125 |
+
avg_cer = sum(item["cer"] for item in per_sample_metrics) / len(per_sample_metrics)
|
126 |
+
|
127 |
+
# Calculate weighted average metrics based on reference length
|
128 |
+
weighted_wer = sum(item["wer"] * item["ref_word_count"] for item in per_sample_metrics) / total_ref_words
|
129 |
+
weighted_cer = sum(item["cer"] * item["ref_char_count"] for item in per_sample_metrics) / total_ref_chars
|
130 |
+
|
131 |
+
print(f"Simple average WER: {avg_wer:.4f}, CER: {avg_cer:.4f}")
|
132 |
+
print(f"Weighted average WER: {weighted_wer:.4f}, CER: {weighted_cer:.4f}")
|
133 |
+
print(f"Processed {len(per_sample_metrics)} valid samples")
|
134 |
+
|
135 |
+
return avg_wer, avg_cer, weighted_wer, weighted_cer, per_sample_metrics
|
136 |
+
|
137 |
+
def styled_error(message):
|
138 |
+
"""Format error messages with red styling"""
|
139 |
+
return f"<div style='color: red; font-weight: bold; padding: 10px; border-radius: 5px; background-color: #ffe0e0;'>{message}</div>"
|
140 |
+
|
141 |
+
def styled_success(message):
|
142 |
+
"""Format success messages with green styling"""
|
143 |
+
return f"<div style='color: green; font-weight: bold; padding: 10px; border-radius: 5px; background-color: #e0ffe0;'>{message}</div>"
|
144 |
+
|
145 |
+
def styled_info(message):
|
146 |
+
"""Format informational messages with blue styling"""
|
147 |
+
return f"<div style='color: #004080; padding: 10px; border-radius: 5px; background-color: #e0f0ff;'>{message}</div>"
|
148 |
|
149 |
def process_submission(submitter_name, csv_file):
|
150 |
+
"""
|
151 |
+
Process a submission CSV, calculate metrics, and update the leaderboard.
|
152 |
+
Returns a status message and updated leaderboard.
|
153 |
+
"""
|
154 |
try:
|
155 |
+
# Validate submitter name
|
156 |
+
if not submitter_name or len(submitter_name.strip()) < 3:
|
157 |
+
return styled_error("Please provide a valid submitter name (at least 3 characters)"), None
|
158 |
+
|
159 |
# Read and validate the uploaded CSV
|
160 |
df = pd.read_csv(csv_file)
|
161 |
print(f"Processing submission from {submitter_name} with {len(df)} rows")
|
162 |
|
163 |
+
# Basic validation
|
164 |
if len(df) == 0:
|
165 |
+
return styled_error("Error: Uploaded CSV is empty."), None
|
166 |
+
|
167 |
+
if len(df) < 10:
|
168 |
+
return styled_error("Error: Submission contains too few samples (minimum 10 required)."), None
|
169 |
|
170 |
if set(df.columns) != {"id", "text"}:
|
171 |
+
return styled_error(f"Error: CSV must contain exactly 'id' and 'text' columns. Found: {', '.join(df.columns)}"), None
|
172 |
|
173 |
if df["id"].duplicated().any():
|
174 |
dup_ids = df[df["id"].duplicated()]["id"].unique()
|
175 |
+
return styled_error(f"Error: Duplicate IDs found: {', '.join(map(str, dup_ids[:5]))}."), None
|
176 |
+
|
177 |
+
# Ensure text column contains strings
|
178 |
+
df["text"] = df["text"].astype(str)
|
179 |
+
|
180 |
+
# Check for valid references
|
181 |
+
if not references:
|
182 |
+
return styled_error("Error: Reference dataset could not be loaded. Please try again later."), None
|
183 |
|
184 |
# Check if IDs match the reference dataset
|
185 |
missing_ids = set(references.keys()) - set(df["id"])
|
186 |
extra_ids = set(df["id"]) - set(references.keys())
|
187 |
|
188 |
if missing_ids:
|
189 |
+
return styled_error(f"Error: Missing {len(missing_ids)} IDs in submission. First few missing: {', '.join(map(str, list(missing_ids)[:5]))}."), None
|
190 |
|
191 |
if extra_ids:
|
192 |
+
return styled_error(f"Error: Found {len(extra_ids)} extra IDs not in reference dataset. First few extra: {', '.join(map(str, list(extra_ids)[:5]))}."), None
|
193 |
+
|
194 |
+
# Check for suspicious submissions (high percentage of exact matches)
|
195 |
+
exact_matches = 0
|
196 |
+
for _, row in df.iterrows():
|
197 |
+
if normalize_text(row["text"]) == normalize_text(references[row["id"]]):
|
198 |
+
exact_matches += 1
|
199 |
|
200 |
+
exact_match_ratio = exact_matches / len(df)
|
201 |
+
if exact_match_ratio > 0.95: # If 95% exact matches, likely copying reference
|
202 |
+
return styled_error("Suspicious submission: Too many exact matches with reference texts."), None
|
203 |
+
|
204 |
+
# Calculate metrics
|
205 |
try:
|
206 |
+
avg_wer, avg_cer, weighted_wer, weighted_cer, detailed_results = calculate_metrics(df)
|
207 |
|
208 |
# Debug information
|
209 |
print(f"Calculated metrics - WER: {avg_wer:.4f}, CER: {avg_cer:.4f}")
|
210 |
+
print(f"Weighted metrics - WER: {weighted_wer:.4f}, CER: {weighted_cer:.4f}")
|
211 |
print(f"Processed {len(detailed_results)} valid samples")
|
212 |
|
213 |
# Check for suspiciously low values
|
214 |
+
if avg_wer < 0.001 or weighted_wer < 0.001:
|
215 |
print("WARNING: WER is extremely low - likely an error")
|
216 |
+
return styled_error("Error: WER calculation yielded suspicious results (near-zero). Please check your submission CSV."), None
|
217 |
|
218 |
except Exception as e:
|
219 |
print(f"Error in metrics calculation: {str(e)}")
|
220 |
+
return styled_error(f"Error calculating metrics: {str(e)}"), None
|
221 |
|
222 |
# Update the leaderboard
|
223 |
leaderboard = pd.read_csv(leaderboard_file)
|
224 |
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
225 |
+
|
226 |
new_entry = pd.DataFrame(
|
227 |
+
[[submitter_name, avg_wer, avg_cer, weighted_wer, weighted_cer, len(detailed_results), timestamp]],
|
228 |
+
columns=["submitter", "WER", "CER", "weighted_WER", "weighted_CER", "samples_evaluated", "timestamp"]
|
229 |
)
|
|
|
|
|
230 |
|
231 |
+
# Combine with existing leaderboard and keep only the best submission per submitter
|
232 |
+
combined = pd.concat([leaderboard, new_entry])
|
233 |
+
# Sort by WER (ascending) and get first entry for each submitter
|
234 |
+
best_entries = combined.sort_values("WER").groupby("submitter").first().reset_index()
|
235 |
+
# Sort the resulting dataframe by WER
|
236 |
+
updated_leaderboard = best_entries.sort_values("WER")
|
237 |
+
updated_leaderboard.to_csv(leaderboard_file, index=False)
|
238 |
+
|
239 |
+
# Create detailed metrics summary
|
240 |
+
metrics_summary = f"""
|
241 |
+
<h3>Submission Results</h3>
|
242 |
+
<table>
|
243 |
+
<tr><td><b>Submitter:</b></td><td>{submitter_name}</td></tr>
|
244 |
+
<tr><td><b>Word Error Rate (WER):</b></td><td>{avg_wer:.4f}</td></tr>
|
245 |
+
<tr><td><b>Character Error Rate (CER):</b></td><td>{avg_cer:.4f}</td></tr>
|
246 |
+
<tr><td><b>Weighted WER:</b></td><td>{weighted_wer:.4f}</td></tr>
|
247 |
+
<tr><td><b>Weighted CER:</b></td><td>{weighted_cer:.4f}</td></tr>
|
248 |
+
<tr><td><b>Samples Evaluated:</b></td><td>{len(detailed_results)}</td></tr>
|
249 |
+
<tr><td><b>Submission Time:</b></td><td>{timestamp}</td></tr>
|
250 |
+
</table>
|
251 |
+
"""
|
252 |
+
|
253 |
+
return styled_success(f"Submission processed successfully!") + styled_info(metrics_summary), updated_leaderboard
|
254 |
|
255 |
except Exception as e:
|
256 |
print(f"Error processing submission: {str(e)}")
|
257 |
+
return styled_error(f"Error processing submission: {str(e)}"), None
|
258 |
|
259 |
# Create the Gradio interface
|
260 |
with gr.Blocks(title="Bambara ASR Leaderboard") as demo:
|
261 |
gr.Markdown(
|
262 |
"""
|
263 |
# Bambara ASR Leaderboard
|
264 |
+
|
265 |
Upload a CSV file with 'id' and 'text' columns to evaluate your ASR predictions.
|
266 |
The 'id's must match those in the dataset.
|
267 |
+
|
268 |
+
## Metrics
|
269 |
+
- **WER**: Word Error Rate (lower is better) - measures word-level accuracy
|
270 |
+
- **CER**: Character Error Rate (lower is better) - measures character-level accuracy
|
271 |
+
|
272 |
+
We report both standard averages and length-weighted averages (where longer samples have more influence on the final score).
|
273 |
"""
|
274 |
)
|
275 |
|
276 |
with gr.Row():
|
277 |
+
with gr.Column(scale=1):
|
278 |
+
submitter = gr.Textbox(
|
279 |
+
label="Submitter Name or Model Name",
|
280 |
+
placeholder="e.g., MALIBA-AI/asr",
|
281 |
+
info="Name to appear on the leaderboard"
|
282 |
+
)
|
283 |
+
csv_upload = gr.File(
|
284 |
+
label="Upload CSV File",
|
285 |
+
file_types=[".csv"],
|
286 |
+
info="CSV must have 'id' and 'text' columns"
|
287 |
+
)
|
288 |
+
submit_btn = gr.Button("Submit", variant="primary")
|
289 |
+
|
290 |
+
with gr.Column(scale=2):
|
291 |
+
with gr.Accordion("Submission Format", open=False):
|
292 |
+
gr.Markdown(
|
293 |
+
"""
|
294 |
+
### CSV Format Requirements
|
295 |
+
|
296 |
+
Your CSV file must:
|
297 |
+
- Have exactly two columns: `id` and `text`
|
298 |
+
- The `id` column must match the IDs in the reference dataset
|
299 |
+
- The `text` column should contain your model's transcriptions
|
300 |
+
|
301 |
+
Example:
|
302 |
+
```
|
303 |
+
id,text
|
304 |
+
audio_001,n ye foro ka taa
|
305 |
+
audio_002,i ni ce
|
306 |
+
```
|
307 |
+
|
308 |
+
### Evaluation Process
|
309 |
+
|
310 |
+
Your submissions are evaluated by:
|
311 |
+
1. Normalizing both reference and predicted text (lowercase, punctuation removal)
|
312 |
+
2. Calculating Word Error Rate (WER) and Character Error Rate (CER)
|
313 |
+
3. Computing both simple average and length-weighted average
|
314 |
+
4. Ranking on the leaderboard by WER (lower is better)
|
315 |
+
|
316 |
+
Only your best submission is kept on the leaderboard.
|
317 |
+
"""
|
318 |
+
)
|
319 |
+
|
320 |
+
output_msg = gr.HTML(label="Status")
|
321 |
+
|
322 |
+
# Leaderboard display
|
323 |
+
with gr.Accordion("Leaderboard", open=True):
|
324 |
+
leaderboard_display = gr.DataFrame(
|
325 |
+
label="Current Standings",
|
326 |
+
value=pd.read_csv(leaderboard_file),
|
327 |
+
interactive=False
|
328 |
+
)
|
329 |
|
330 |
submit_btn.click(
|
331 |
fn=process_submission,
|