MAli7319's picture
Update app.py
d6d38ad
raw
history blame
3.81 kB
import gradio as gr
import pandas as pd
import numpy as np
pip install langdetect
from langdetect import detect
pip install vaderSentiment
from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
from sklearn.model_selection import train_test_split
from sklearn.svm import SVR
from sklearn.metrics import mean_squared_error
data = pd.read_csv("modeled_data.csv")
analyzer = SentimentIntensityAnalyzer()
def sample_model(df, regressor, scale=None):
X = df.drop("rate",axis=1)
y = df["rate"]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state=1)
scaled_X_train, scaled_X_test = X_train, X_test
if scale != None:
scaler = scale
scaled_X_train = pd.DataFrame(scaler.fit_transform(X_train), columns = X_train.columns)
scaled_X_test = pd.DataFrame(scaler.transform(X_test),columns = X_test.columns)
model = regressor
model.fit(scaled_X_train, y_train)
y_pred = model.predict(scaled_X_test)
rmse = np.sqrt(mean_squared_error(y_test, y_pred))
return model, scaled_X_train, scaled_X_test, y_train, y_test
def user_interaction(comment, model):
negative_score = analyzer.polarity_scores(comment)["neg"]
neutral_score = analyzer.polarity_scores(comment)["neu"]
positive_score = analyzer.polarity_scores(comment)["pos"]
compound_score = analyzer.polarity_scores(comment)["compound"]
rate_pred = model.predict([[negative_score, neutral_score, positive_score, compound_score]])
return round(negative_score,2), round(neutral_score,2), round(positive_score,2), round(compound_score,2), round(rate_pred[0],2)
"""return (f"\nYour Comment: {comment}\n" +
"*"*10 + "Analysis of the Comment" + "*"*10 + "\n" +
"-"*10 + f"Negativity Score: {negative_score:.2f}" + "-"*10 + "\n" +
"-"*10 + f"Neutrality Score: {neutral_score:.2f}" + "-"*10 + "\n" +
"-"*10 + f"Positivity Score: {positive_score:.2f}" + "-"*10 + "\n" +
"-"*10 + f"Compound Score: {compound_score:.2f}" + "-"*10 + "\n" +
"*"*43 + "\n"), ("\nThe estimated rating this comment can give" + "\n" +
"*"*20 + str(round(rate_pred[0], 2)) + "*"*20 + "\n")"""
def take_input(model):
if (detect(comment) != "en") or (len(comment) < 20):
return "Sorry, your comment does not meet the requirements.\n", "Please check your comment"
else:
return user_interaction(comment, model)
cons_tuned_svr, _, _, _, _ = sample_model(data, SVR(C=3, kernel="rbf", tol=0.001))
with gr.Blocks() as demo:
gr.Markdown("# AIN311 Project P05 - MOOC Recommendation")
gr.Markdown("## Generating a Rating from User Comment")
"""
# Hello World!
Start typing below to see the output.
"""
with gr.Column():
gr.Markdown("""
### Thanks for your interest and taking your time.
#### Tell us about your personal experience enrolling in this course. Was it the right match for you?
#### (Note: Comment should be written in English and be longer than 20 characters)
""")
comment = gr.Textbox(placeholder="Write your comment here...")
button = gr.Button("What is the Rating I Gave? Click me to Learn")
gr.Markdown("#### Sentiment Scores of Your Comment")
negscore = gr.Number(label="Negativity Score")
neuscore = gr.Number(label="Neutrality Score")
posscore = gr.Number(label="Positivity Score")
compscore = gr.Number(label="Compound Score")
rating = gr.Number(label="Generated Rating from Your Comment")
button.click(fn=take_input(cons_tuned_svr), inputs=comment, outputs=[negscore, neuscore, posscore, compscore, rating])
demo.launch()