Spaces:
Runtime error
Runtime error
Update comment_analyzer.py
Browse files- comment_analyzer.py +9 -14
comment_analyzer.py
CHANGED
@@ -12,27 +12,22 @@ data = pd.read_csv("modeled_data.csv")
|
|
12 |
analyzer = SentimentIntensityAnalyzer()
|
13 |
|
14 |
|
15 |
-
def sample_model(df, regressor
|
16 |
X = df.drop("rate",axis=1)
|
17 |
y = df["rate"]
|
18 |
|
19 |
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state=1)
|
20 |
-
scaled_X_train, scaled_X_test = X_train, X_test
|
21 |
-
if scale != None:
|
22 |
-
scaler = scale
|
23 |
-
scaled_X_train = pd.DataFrame(scaler.fit_transform(X_train), columns = X_train.columns)
|
24 |
-
scaled_X_test = pd.DataFrame(scaler.transform(X_test),columns = X_test.columns)
|
25 |
|
26 |
model = regressor
|
27 |
-
model.fit(
|
28 |
-
y_pred = model.predict(
|
29 |
|
30 |
rmse = np.sqrt(mean_squared_error(y_test, y_pred))
|
31 |
|
32 |
-
return model
|
33 |
|
34 |
|
35 |
-
def
|
36 |
|
37 |
negative_score = analyzer.polarity_scores(comment)["neg"]
|
38 |
neutral_score = analyzer.polarity_scores(comment)["neu"]
|
@@ -45,8 +40,8 @@ def user_interaction(comment, model):
|
|
45 |
|
46 |
def take_input(comment):
|
47 |
|
48 |
-
cons_tuned_svr
|
49 |
-
return
|
50 |
|
51 |
|
52 |
with gr.Blocks() as demo:
|
@@ -57,8 +52,8 @@ with gr.Blocks() as demo:
|
|
57 |
##### Thanks for your interest and taking your time.
|
58 |
##### Tell us about your personal experience enrolling in this course. Was it the right match for you?
|
59 |
""")
|
60 |
-
input_comment = gr.Textbox(placeholder="Write your comment here...", show_label = False)
|
61 |
-
button = gr.Button("What is the Rating I Have Given? Click me to Learn")
|
62 |
with gr.Row():
|
63 |
with gr.Column():
|
64 |
gr.Markdown("#### Generated Rating from Your Comment")
|
|
|
12 |
analyzer = SentimentIntensityAnalyzer()
|
13 |
|
14 |
|
15 |
+
def sample_model(df, regressor):
|
16 |
X = df.drop("rate",axis=1)
|
17 |
y = df["rate"]
|
18 |
|
19 |
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state=1)
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
model = regressor
|
22 |
+
model.fit(X_train, y_train)
|
23 |
+
y_pred = model.predict(X_test)
|
24 |
|
25 |
rmse = np.sqrt(mean_squared_error(y_test, y_pred))
|
26 |
|
27 |
+
return model
|
28 |
|
29 |
|
30 |
+
def calculate_sentiments(comment, model):
|
31 |
|
32 |
negative_score = analyzer.polarity_scores(comment)["neg"]
|
33 |
neutral_score = analyzer.polarity_scores(comment)["neu"]
|
|
|
40 |
|
41 |
def take_input(comment):
|
42 |
|
43 |
+
cons_tuned_svr = sample_model(data, SVR(C=3, kernel="rbf", tol=0.001))
|
44 |
+
return calculate_sentiments(comment, cons_tuned_svr)
|
45 |
|
46 |
|
47 |
with gr.Blocks() as demo:
|
|
|
52 |
##### Thanks for your interest and taking your time.
|
53 |
##### Tell us about your personal experience enrolling in this course. Was it the right match for you?
|
54 |
""")
|
55 |
+
input_comment = gr.Textbox(placeholder="Write your comment here...", show_label = False, lines=2)
|
56 |
+
button = gr.Button("What is the Rating I Have Given? Click me to Learn", variant="primary").style(full_width=True)
|
57 |
with gr.Row():
|
58 |
with gr.Column():
|
59 |
gr.Markdown("#### Generated Rating from Your Comment")
|