MAli7319 commited on
Commit
a204dfd
·
1 Parent(s): b774364

Update comment_analyzer.py

Browse files
Files changed (1) hide show
  1. comment_analyzer.py +7 -20
comment_analyzer.py CHANGED
@@ -1,20 +1,17 @@
1
  import gradio as gr
2
  import pandas as pd
3
  import numpy as np
4
-
5
- #pip install langdetect
6
  from langdetect import detect
7
-
8
- #pip install vaderSentiment
9
  from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
10
-
11
  from sklearn.model_selection import train_test_split
12
  from sklearn.svm import SVR
13
  from sklearn.metrics import mean_squared_error
14
 
 
15
  data = pd.read_csv("modeled_data.csv")
16
  analyzer = SentimentIntensityAnalyzer()
17
 
 
18
  def sample_model(df, regressor, scale=None):
19
  X = df.drop("rate",axis=1)
20
  y = df["rate"]
@@ -44,26 +41,14 @@ def user_interaction(comment, model):
44
  rate_pred = model.predict([[negative_score, neutral_score, positive_score, compound_score]])
45
 
46
  return round(negative_score,2), round(neutral_score,2), round(positive_score,2), round(compound_score,2), round(rate_pred[0],2)
47
- """return (f"\nYour Comment: {comment}\n" +
48
- "*"*10 + "Analysis of the Comment" + "*"*10 + "\n" +
49
- "-"*10 + f"Negativity Score: {negative_score:.2f}" + "-"*10 + "\n" +
50
- "-"*10 + f"Neutrality Score: {neutral_score:.2f}" + "-"*10 + "\n" +
51
- "-"*10 + f"Positivity Score: {positive_score:.2f}" + "-"*10 + "\n" +
52
- "-"*10 + f"Compound Score: {compound_score:.2f}" + "-"*10 + "\n" +
53
- "*"*43 + "\n"), ("\nThe estimated rating this comment can give" + "\n" +
54
- "*"*20 + str(round(rate_pred[0], 2)) + "*"*20 + "\n")"""
55
-
56
 
 
57
  def take_input(comment):
58
- #if (detect(comment) != "en") or (len(comment) < 20):
59
- # return "Sorry, your comment does not meet the requirements.\n", "Please check your comment"
60
- #else:
61
  cons_tuned_svr, _, _, _, _ = sample_model(data, SVR(C=3, kernel="rbf", tol=0.001))
62
  return user_interaction(comment, cons_tuned_svr)
63
 
64
 
65
-
66
-
67
  with gr.Blocks() as demo:
68
  gr.Markdown("# AIN311 Project P05 - MOOC Recommendation")
69
  gr.Markdown("## Generating a Rating from User Comment")
@@ -75,12 +60,14 @@ with gr.Blocks() as demo:
75
  """)
76
  input_comment = gr.Textbox(placeholder="Write your comment here...")
77
  button = gr.Button("What is the Rating I Gave? Click me to Learn")
 
78
  gr.Markdown("#### Sentiment Scores of Your Comment")
79
  negscore = gr.Number(label="Negativity Score")
80
  neuscore = gr.Number(label="Neutrality Score")
81
  posscore = gr.Number(label="Positivity Score")
82
  compscore = gr.Number(label="Compound Score")
83
- rating = gr.Number(label="Generated Rating from Your Comment")
 
84
  button.click(fn=take_input, inputs=input_comment, outputs=[negscore, neuscore, posscore, compscore, rating])
85
 
86
  demo.launch()
 
1
  import gradio as gr
2
  import pandas as pd
3
  import numpy as np
 
 
4
  from langdetect import detect
 
 
5
  from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
 
6
  from sklearn.model_selection import train_test_split
7
  from sklearn.svm import SVR
8
  from sklearn.metrics import mean_squared_error
9
 
10
+
11
  data = pd.read_csv("modeled_data.csv")
12
  analyzer = SentimentIntensityAnalyzer()
13
 
14
+
15
  def sample_model(df, regressor, scale=None):
16
  X = df.drop("rate",axis=1)
17
  y = df["rate"]
 
41
  rate_pred = model.predict([[negative_score, neutral_score, positive_score, compound_score]])
42
 
43
  return round(negative_score,2), round(neutral_score,2), round(positive_score,2), round(compound_score,2), round(rate_pred[0],2)
 
 
 
 
 
 
 
 
 
44
 
45
+
46
  def take_input(comment):
47
+
 
 
48
  cons_tuned_svr, _, _, _, _ = sample_model(data, SVR(C=3, kernel="rbf", tol=0.001))
49
  return user_interaction(comment, cons_tuned_svr)
50
 
51
 
 
 
52
  with gr.Blocks() as demo:
53
  gr.Markdown("# AIN311 Project P05 - MOOC Recommendation")
54
  gr.Markdown("## Generating a Rating from User Comment")
 
60
  """)
61
  input_comment = gr.Textbox(placeholder="Write your comment here...")
62
  button = gr.Button("What is the Rating I Gave? Click me to Learn")
63
+
64
  gr.Markdown("#### Sentiment Scores of Your Comment")
65
  negscore = gr.Number(label="Negativity Score")
66
  neuscore = gr.Number(label="Neutrality Score")
67
  posscore = gr.Number(label="Positivity Score")
68
  compscore = gr.Number(label="Compound Score")
69
+ rating = gr.Number(label="Generated Rating from Your Comment")
70
+
71
  button.click(fn=take_input, inputs=input_comment, outputs=[negscore, neuscore, posscore, compscore, rating])
72
 
73
  demo.launch()