MAli7319 commited on
Commit
da2c9bd
·
1 Parent(s): 9de4177

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +60 -4
app.py CHANGED
@@ -1,8 +1,64 @@
1
  import gradio as gr
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
 
4
- with gr.Blocks() as user:
5
- gr.Markdown("# AIN311 Project P05 - MOOC Recommendation")
6
- print("Hello")
7
- iface = gr.Interface(fn=user, inputs="text", outputs="text")
8
  iface.launch()
 
1
  import gradio as gr
2
+ import pandas as pd
3
+ import numpy as np
4
+ from sklearn.model_selection import train_test_split
5
+ from sklearn.svm import SVR
6
+ from sklearn.metrics import mean_squared_error
7
+
8
+ data = pd.read_csv("modeled_data.csv")
9
+
10
+ def sample_model(df, regressor, scale=None):
11
+ X = df.drop("rate",axis=1)
12
+ y = df["rate"]
13
+
14
+ X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state=1)
15
+ scaled_X_train, scaled_X_test = X_train, X_test
16
+ if scale != None:
17
+ scaler = scale
18
+ scaled_X_train = pd.DataFrame(scaler.fit_transform(X_train), columns = X_train.columns)
19
+ scaled_X_test = pd.DataFrame(scaler.transform(X_test),columns = X_test.columns)
20
+
21
+ model = regressor
22
+ model.fit(scaled_X_train, y_train)
23
+ y_pred = model.predict(scaled_X_test)
24
+
25
+ rmse = np.sqrt(mean_squared_error(y_test, y_pred))
26
+
27
+ return model, scaled_X_train, scaled_X_test, y_train, y_test
28
+
29
+
30
+ def user_interaction(comment, model):
31
+
32
+ negative_score = analyzer.polarity_scores(comment)["neg"]
33
+ neutral_score = analyzer.polarity_scores(comment)["neu"]
34
+ positive_score = analyzer.polarity_scores(comment)["pos"]
35
+ compound_score = analyzer.polarity_scores(comment)["compound"]
36
+ rate_pred = model.predict([[negative_score, neutral_score, positive_score, compound_score]])
37
 
38
+ print(f"\nYour Comment: {comment}\n")
39
+ print("*"*10 + "Analysis of the Comment" + "*"*10)
40
+ print("-"*10 + f"Negativity Score: {negative_score:.2f}" + "-"*10)
41
+ print("-"*10 + f"Neutrality Score: {neutral_score:.2f}" + "-"*10)
42
+ print("-"*10 + f"Positivity Score: {positive_score:.2f}" + "-"*10)
43
+ print("-"*10 + f"Compound Score: {compound_score:.2f}" + "-"*10)
44
+ print("*"*43)
45
+ print("\nThe estimated rating this comment can give")
46
+ print("*"*20 + str(round(rate_pred[0], 2)) + "*"*20)
47
+
48
+
49
+ def take_input(model):
50
+ comment = input("Thanks for your interest and taking your time.\n"+
51
+ "Tell us about your personal experience enrolling in this course. Was it the right match for you?\n"+
52
+ "(Note: Comment should be written in English and be longer than 20 characters)\n")
53
+ if (detect(comment) != "en") or (len(comment) < 20):
54
+ print("Sorry, your comment does not meet the requirements.\n")
55
+ take_input(model)
56
+ else:
57
+ user_interaction(comment, model)
58
+
59
+ cons_tuned_svr, _, _, _, _ = sample_model(data, SVR(C=3, kernel="rbf", tol=0.001))
60
+
61
+
62
 
63
+ iface = gr.Interface(fn=take_input(cons_tuned_svr), inputs="text", outputs="text")
 
 
 
64
  iface.launch()