import gradio as gr import pandas as pd import numpy as np from sklearn.model_selection import train_test_split from sklearn.svm import SVR from sklearn.metrics import mean_squared_error data = pd.read_csv("modeled_data.csv") def sample_model(df, regressor, scale=None): X = df.drop("rate",axis=1) y = df["rate"] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state=1) scaled_X_train, scaled_X_test = X_train, X_test if scale != None: scaler = scale scaled_X_train = pd.DataFrame(scaler.fit_transform(X_train), columns = X_train.columns) scaled_X_test = pd.DataFrame(scaler.transform(X_test),columns = X_test.columns) model = regressor model.fit(scaled_X_train, y_train) y_pred = model.predict(scaled_X_test) rmse = np.sqrt(mean_squared_error(y_test, y_pred)) return model, scaled_X_train, scaled_X_test, y_train, y_test def user_interaction(comment, model): negative_score = analyzer.polarity_scores(comment)["neg"] neutral_score = analyzer.polarity_scores(comment)["neu"] positive_score = analyzer.polarity_scores(comment)["pos"] compound_score = analyzer.polarity_scores(comment)["compound"] rate_pred = model.predict([[negative_score, neutral_score, positive_score, compound_score]]) print(f"\nYour Comment: {comment}\n") print("*"*10 + "Analysis of the Comment" + "*"*10) print("-"*10 + f"Negativity Score: {negative_score:.2f}" + "-"*10) print("-"*10 + f"Neutrality Score: {neutral_score:.2f}" + "-"*10) print("-"*10 + f"Positivity Score: {positive_score:.2f}" + "-"*10) print("-"*10 + f"Compound Score: {compound_score:.2f}" + "-"*10) print("*"*43) print("\nThe estimated rating this comment can give") print("*"*20 + str(round(rate_pred[0], 2)) + "*"*20) def take_input(model): comment = input("Thanks for your interest and taking your time.\n"+ "Tell us about your personal experience enrolling in this course. Was it the right match for you?\n"+ "(Note: Comment should be written in English and be longer than 20 characters)\n") if (detect(comment) != "en") or (len(comment) < 20): print("Sorry, your comment does not meet the requirements.\n") take_input(model) else: user_interaction(comment, model) cons_tuned_svr, _, _, _, _ = sample_model(data, SVR(C=3, kernel="rbf", tol=0.001)) iface = gr.Interface(fn=take_input(cons_tuned_svr), inputs="text", outputs="text") iface.launch()