import gradio as gr import pandas as pd import numpy as np #pip install langdetect from langdetect import detect #pip install vaderSentiment from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer from sklearn.model_selection import train_test_split from sklearn.svm import SVR from sklearn.metrics import mean_squared_error data = pd.read_csv("modeled_data.csv") analyzer = SentimentIntensityAnalyzer() def sample_model(df, regressor, scale=None): X = df.drop("rate",axis=1) y = df["rate"] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state=1) scaled_X_train, scaled_X_test = X_train, X_test if scale != None: scaler = scale scaled_X_train = pd.DataFrame(scaler.fit_transform(X_train), columns = X_train.columns) scaled_X_test = pd.DataFrame(scaler.transform(X_test),columns = X_test.columns) model = regressor model.fit(scaled_X_train, y_train) y_pred = model.predict(scaled_X_test) rmse = np.sqrt(mean_squared_error(y_test, y_pred)) return model, scaled_X_train, scaled_X_test, y_train, y_test def user_interaction(comment, model): negative_score = analyzer.polarity_scores(comment)["neg"] neutral_score = analyzer.polarity_scores(comment)["neu"] positive_score = analyzer.polarity_scores(comment)["pos"] compound_score = analyzer.polarity_scores(comment)["compound"] rate_pred = model.predict([[negative_score, neutral_score, positive_score, compound_score]]) return round(negative_score,2), round(neutral_score,2), round(positive_score,2), round(compound_score,2), round(rate_pred[0],2) """return (f"\nYour Comment: {comment}\n" + "*"*10 + "Analysis of the Comment" + "*"*10 + "\n" + "-"*10 + f"Negativity Score: {negative_score:.2f}" + "-"*10 + "\n" + "-"*10 + f"Neutrality Score: {neutral_score:.2f}" + "-"*10 + "\n" + "-"*10 + f"Positivity Score: {positive_score:.2f}" + "-"*10 + "\n" + "-"*10 + f"Compound Score: {compound_score:.2f}" + "-"*10 + "\n" + "*"*43 + "\n"), ("\nThe estimated rating this comment can give" + "\n" + "*"*20 + str(round(rate_pred[0], 2)) + "*"*20 + "\n")""" def take_input(comment): #if (detect(comment) != "en") or (len(comment) < 20): # return "Sorry, your comment does not meet the requirements.\n", "Please check your comment" #else: cons_tuned_svr, _, _, _, _ = sample_model(data, SVR(C=3, kernel="rbf", tol=0.001)) return user_interaction(comment, cons_tuned_svr) with gr.Blocks() as demo: gr.Markdown("# AIN311 Project P05 - MOOC Recommendation") gr.Markdown("## Generating a Rating from User Comment") with gr.Column(): gr.Markdown(""" ##### Thanks for your interest and taking your time. ##### Tell us about your personal experience enrolling in this course. Was it the right match for you? ##### (Note: Comment should be written in English and be longer than 20 characters) """) input_comment = gr.Textbox(placeholder="Write your comment here...") button = gr.Button("What is the Rating I Gave? Click me to Learn") gr.Markdown("#### Sentiment Scores of Your Comment") negscore = gr.Number(label="Negativity Score") neuscore = gr.Number(label="Neutrality Score") posscore = gr.Number(label="Positivity Score") compscore = gr.Number(label="Compound Score") rating = gr.Number(label="Generated Rating from Your Comment") button.click(fn=take_input, inputs=input_comment, outputs=[negscore, neuscore, posscore, compscore, rating]) demo.launch()