Update app.py
Browse files
app.py
CHANGED
@@ -20,170 +20,9 @@ HF_TOKEN = os.getenv("HF_TOKEN")
|
|
20 |
if not HF_TOKEN:
|
21 |
raise ValueError("HF_TOKEN environment variable is not set or invalid.")
|
22 |
|
23 |
-
# def initialize_leaderboard_file():
|
24 |
-
# """
|
25 |
-
# Ensure the leaderboard file exists and has the correct headers.
|
26 |
-
# """
|
27 |
-
# if not os.path.exists(LEADERBOARD_FILE):
|
28 |
-
# pd.DataFrame(columns=[
|
29 |
-
# "Model Name", "Overall Accuracy", "Valid Accuracy",
|
30 |
-
# "Correct Predictions", "Total Questions", "Timestamp"
|
31 |
-
# ]).to_csv(LEADERBOARD_FILE, index=False)
|
32 |
-
# elif os.stat(LEADERBOARD_FILE).st_size == 0:
|
33 |
-
# pd.DataFrame(columns=[
|
34 |
-
# "Model Name", "Overall Accuracy", "Valid Accuracy",
|
35 |
-
# "Correct Predictions", "Total Questions", "Timestamp"
|
36 |
-
# ]).to_csv(LEADERBOARD_FILE, index=False)
|
37 |
-
|
38 |
-
# def clean_answer(answer):
|
39 |
-
# if pd.isna(answer):
|
40 |
-
# return None
|
41 |
-
# answer = str(answer)
|
42 |
-
# clean = re.sub(r'[^A-Da-d]', '', answer)
|
43 |
-
# return clean[0].upper() if clean else None
|
44 |
-
|
45 |
-
|
46 |
-
# def update_leaderboard(results):
|
47 |
-
# """
|
48 |
-
# Append new submission results to the leaderboard file and push updates to the Hugging Face repository.
|
49 |
-
# """
|
50 |
-
# new_entry = {
|
51 |
-
# "Model Name": results['model_name'],
|
52 |
-
# "Overall Accuracy": round(results['overall_accuracy'] * 100, 2),
|
53 |
-
# "Valid Accuracy": round(results['valid_accuracy'] * 100, 2),
|
54 |
-
# "Correct Predictions": results['correct_predictions'],
|
55 |
-
# "Total Questions": results['total_questions'],
|
56 |
-
# "Timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
|
57 |
-
# }
|
58 |
-
|
59 |
-
# try:
|
60 |
-
# # Update the local leaderboard file
|
61 |
-
# new_entry_df = pd.DataFrame([new_entry])
|
62 |
-
# file_exists = os.path.exists(LEADERBOARD_FILE)
|
63 |
-
|
64 |
-
# new_entry_df.to_csv(
|
65 |
-
# LEADERBOARD_FILE,
|
66 |
-
# mode='a', # Append mode
|
67 |
-
# index=False,
|
68 |
-
# header=not file_exists # Write header only if the file is new
|
69 |
-
# )
|
70 |
-
# print(f"Leaderboard updated successfully at {LEADERBOARD_FILE}")
|
71 |
-
|
72 |
-
# # Push the updated file to the Hugging Face repository using HTTP API
|
73 |
-
# api = HfApi()
|
74 |
-
# token = HfFolder.get_token()
|
75 |
-
|
76 |
-
# api.upload_file(
|
77 |
-
# path_or_fileobj=LEADERBOARD_FILE,
|
78 |
-
# path_in_repo="leaderboard.csv",
|
79 |
-
# repo_id="SondosMB/ss", # Your Space repository
|
80 |
-
# repo_type="space",
|
81 |
-
# token=token
|
82 |
-
# )
|
83 |
-
# print("Leaderboard changes pushed to Hugging Face repository.")
|
84 |
-
|
85 |
-
# except Exception as e:
|
86 |
-
# print(f"Error updating leaderboard file: {e}")
|
87 |
-
|
88 |
-
|
89 |
|
90 |
-
|
91 |
-
# if not os.path.exists(LEADERBOARD_FILE) or os.stat(LEADERBOARD_FILE).st_size == 0:
|
92 |
-
# return pd.DataFrame({
|
93 |
-
# "Model Name": [],
|
94 |
-
# "Overall Accuracy": [],
|
95 |
-
# "Valid Accuracy": [],
|
96 |
-
# "Correct Predictions": [],
|
97 |
-
# "Total Questions": [],
|
98 |
-
# "Timestamp": [],
|
99 |
-
# })
|
100 |
-
# return pd.read_csv(LEADERBOARD_FILE)
|
101 |
|
102 |
-
# def evaluate_predictions(prediction_file, model_name, add_to_leaderboard):
|
103 |
-
# try:
|
104 |
-
# ground_truth_path = hf_hub_download(
|
105 |
-
# repo_id="SondosMB/ground-truth-dataset",
|
106 |
-
# filename="ground_truth.csv",
|
107 |
-
# repo_type="dataset",
|
108 |
-
# use_auth_token=True
|
109 |
-
# )
|
110 |
-
# ground_truth_df = pd.read_csv(ground_truth_path)
|
111 |
-
# except FileNotFoundError:
|
112 |
-
# return "Ground truth file not found in the dataset repository.", load_leaderboard()
|
113 |
-
# except Exception as e:
|
114 |
-
# return f"Error loading ground truth: {e}", load_leaderboard()
|
115 |
-
|
116 |
-
# if not prediction_file:
|
117 |
-
# return "Prediction file not uploaded.", load_leaderboard()
|
118 |
-
|
119 |
-
# try:
|
120 |
-
# #load predition file
|
121 |
-
# predictions_df = pd.read_csv(prediction_file.name)
|
122 |
-
# # Validate required columns in prediction file
|
123 |
-
# required_columns = ['question_id', 'predicted_answer']
|
124 |
-
# missing_columns = [col for col in required_columns if col not in predictions_df.columns]
|
125 |
-
# if missing_columns:
|
126 |
-
# return (f"Error: Missing required columns in prediction file: {', '.join(missing_columns)}.",
|
127 |
-
# load_leaderboard())
|
128 |
-
|
129 |
-
# # Validate 'Answer' column in ground truth file
|
130 |
-
# if 'Answer' not in ground_truth_df.columns:
|
131 |
-
# return "Error: 'Answer' column is missing in the ground truth dataset.", load_leaderboard()
|
132 |
-
# merged_df = pd.merge(predictions_df, ground_truth_df, on='question_id', how='inner')
|
133 |
-
# merged_df['pred_answer'] = merged_df['predicted_answer'].apply(clean_answer)
|
134 |
-
|
135 |
-
# valid_predictions = merged_df.dropna(subset=['pred_answer'])
|
136 |
-
# correct_predictions = (valid_predictions['pred_answer'] == valid_predictions['Answer']).sum()
|
137 |
-
# total_predictions = len(merged_df)
|
138 |
-
# total_valid_predictions = len(valid_predictions)
|
139 |
-
|
140 |
-
# overall_accuracy = correct_predictions / total_predictions if total_predictions > 0 else 0
|
141 |
-
# valid_accuracy = correct_predictions / total_valid_predictions if total_valid_predictions > 0 else 0
|
142 |
-
|
143 |
-
# results = {
|
144 |
-
# 'model_name': model_name if model_name else "Unknown Model",
|
145 |
-
# 'overall_accuracy': overall_accuracy,
|
146 |
-
# }
|
147 |
-
|
148 |
-
# if add_to_leaderboard:
|
149 |
-
# update_leaderboard(results)
|
150 |
-
# return "Evaluation completed and added to leaderboard.", load_leaderboard()
|
151 |
-
# else:
|
152 |
-
# return "Evaluation completed but not added to leaderboard.", load_leaderboard()
|
153 |
-
|
154 |
-
# except Exception as e:
|
155 |
-
# return f"Error during evaluation: {str(e)}", load_leaderboard()
|
156 |
-
|
157 |
-
# initialize_leaderboard_file()
|
158 |
-
# def initialize_leaderboard_file():
|
159 |
-
# """
|
160 |
-
# Ensure the leaderboard file exists and has the correct headers.
|
161 |
-
# """
|
162 |
-
# if not os.path.exists(LEADERBOARD_FILE):
|
163 |
-
# pd.DataFrame(columns=[
|
164 |
-
# "Model Name", "Overall Accuracy", "Valid Accuracy",
|
165 |
-
# "Correct Predictions", "Total Questions", "Timestamp"
|
166 |
-
# ]).to_csv(LEADERBOARD_FILE, index=False)
|
167 |
-
# elif os.stat(LEADERBOARD_FILE).st_size == 0:
|
168 |
-
# pd.DataFrame(columns=[
|
169 |
-
# "Model Name", "Overall Accuracy", "Valid Accuracy",
|
170 |
-
# "Correct Predictions", "Total Questions", "Timestamp"
|
171 |
-
# ]).to_csv(LEADERBOARD_FILE, index=False)
|
172 |
-
|
173 |
-
# def initialize_leaderboard_file():
|
174 |
-
# """
|
175 |
-
# Ensure the leaderboard file exists and has the correct headers.
|
176 |
-
# """
|
177 |
-
# if not os.path.exists(LEADERBOARD_FILE):
|
178 |
-
# pd.DataFrame(columns=[
|
179 |
-
# "Model Name", "Overall Accuracy", "Correct Predictions",
|
180 |
-
# "Total Questions", "Timestamp", "Team Name"
|
181 |
-
# ]).to_csv(LEADERBOARD_FILE, index=False)
|
182 |
-
# elif os.stat(LEADERBOARD_FILE).st_size == 0:
|
183 |
-
# pd.DataFrame(columns=[
|
184 |
-
# "Model Name", "Overall Accuracy", "Correct Predictions",
|
185 |
-
# "Total Questions", "Timestamp", "Team Name"
|
186 |
-
# ]).to_csv(LEADERBOARD_FILE, index=False)
|
187 |
def initialize_leaderboard_file():
|
188 |
"""
|
189 |
Ensure the leaderboard file exists and has the correct headers.
|
@@ -222,47 +61,7 @@ def clean_answer(answer):
|
|
222 |
return clean[0].upper() if clean else None
|
223 |
|
224 |
|
225 |
-
|
226 |
-
# """
|
227 |
-
# Append new submission results to the leaderboard file and push updates to the Hugging Face repository.
|
228 |
-
# """
|
229 |
-
# new_entry = {
|
230 |
-
# "Model Name": results['model_name'],
|
231 |
-
# "Overall Accuracy": round(results['overall_accuracy'] * 100, 2),
|
232 |
-
# "Valid Accuracy": round(results['valid_accuracy'] * 100, 2),
|
233 |
-
# "Correct Predictions": results['correct_predictions'],
|
234 |
-
# "Total Questions": results['total_questions'],
|
235 |
-
# "Timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
|
236 |
-
# }
|
237 |
-
|
238 |
-
# try:
|
239 |
-
# # Update the local leaderboard file
|
240 |
-
# new_entry_df = pd.DataFrame([new_entry])
|
241 |
-
# file_exists = os.path.exists(LEADERBOARD_FILE)
|
242 |
-
|
243 |
-
# new_entry_df.to_csv(
|
244 |
-
# LEADERBOARD_FILE,
|
245 |
-
# mode='a', # Append mode
|
246 |
-
# index=False,
|
247 |
-
# header=not file_exists # Write header only if the file is new
|
248 |
-
# )
|
249 |
-
# print(f"Leaderboard updated successfully at {LEADERBOARD_FILE}")
|
250 |
-
|
251 |
-
# # Push the updated file to the Hugging Face repository using HTTP API
|
252 |
-
# api = HfApi()
|
253 |
-
# token = HfFolder.get_token()
|
254 |
-
|
255 |
-
# api.upload_file(
|
256 |
-
# path_or_fileobj=LEADERBOARD_FILE,
|
257 |
-
# path_in_repo="leaderboard.csv",
|
258 |
-
# repo_id="SondosMB/ss", # Your Space repository
|
259 |
-
# repo_type="space",
|
260 |
-
# token=token
|
261 |
-
# )
|
262 |
-
# print("Leaderboard changes pushed to Hugging Face repository.")
|
263 |
-
|
264 |
-
# except Exception as e:
|
265 |
-
# print(f"Error updating leaderboard file: {e}")
|
266 |
|
267 |
def update_leaderboard(results):
|
268 |
"""
|
@@ -349,21 +148,23 @@ def update_leaderboard_pro(results):
|
|
349 |
print(f"Error updating leaderboard file: {e}")
|
350 |
|
351 |
|
|
|
352 |
# def load_leaderboard():
|
353 |
# if not os.path.exists(LEADERBOARD_FILE) or os.stat(LEADERBOARD_FILE).st_size == 0:
|
354 |
# return pd.DataFrame({
|
355 |
# "Model Name": [],
|
356 |
# "Overall Accuracy": [],
|
357 |
-
# "Valid Accuracy": [],
|
358 |
# "Correct Predictions": [],
|
359 |
# "Total Questions": [],
|
360 |
# "Timestamp": [],
|
|
|
|
|
361 |
# })
|
362 |
# return pd.read_csv(LEADERBOARD_FILE)
|
363 |
|
364 |
-
|
365 |
def load_leaderboard():
|
366 |
if not os.path.exists(LEADERBOARD_FILE) or os.stat(LEADERBOARD_FILE).st_size == 0:
|
|
|
367 |
return pd.DataFrame({
|
368 |
"Model Name": [],
|
369 |
"Overall Accuracy": [],
|
@@ -371,9 +172,38 @@ def load_leaderboard():
|
|
371 |
"Total Questions": [],
|
372 |
"Timestamp": [],
|
373 |
"Team Name": [],
|
374 |
-
|
375 |
})
|
376 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
377 |
|
378 |
def load_leaderboard_pro():
|
379 |
if not os.path.exists(LEADERBOARD_FILE_pro) or os.stat(LEADERBOARD_FILE_pro).st_size == 0:
|
@@ -388,120 +218,7 @@ def load_leaderboard_pro():
|
|
388 |
})
|
389 |
return pd.read_csv(LEADERBOARD_FILE_pro)
|
390 |
|
391 |
-
|
392 |
-
# try:
|
393 |
-
# ground_truth_path = hf_hub_download(
|
394 |
-
# repo_id="SondosMB/ground-truth-dataset",
|
395 |
-
# filename="ground_truth.csv",
|
396 |
-
# repo_type="dataset",
|
397 |
-
# use_auth_token=True
|
398 |
-
# )
|
399 |
-
# ground_truth_df = pd.read_csv(ground_truth_path)
|
400 |
-
# except FileNotFoundError:
|
401 |
-
# return "Ground truth file not found in the dataset repository.", load_leaderboard()
|
402 |
-
# except Exception as e:
|
403 |
-
# return f"Error loading ground truth: {e}", load_leaderboard()
|
404 |
-
|
405 |
-
# if not prediction_file:
|
406 |
-
# return "Prediction file not uploaded.", load_leaderboard()
|
407 |
-
|
408 |
-
# try:
|
409 |
-
# #load predition file
|
410 |
-
# predictions_df = pd.read_csv(prediction_file.name)
|
411 |
-
# # Validate required columns in prediction file
|
412 |
-
# required_columns = ['question_id', 'predicted_answer']
|
413 |
-
# missing_columns = [col for col in required_columns if col not in predictions_df.columns]
|
414 |
-
# if missing_columns:
|
415 |
-
# return (f"Error: Missing required columns in prediction file: {', '.join(missing_columns)}.",
|
416 |
-
# load_leaderboard())
|
417 |
-
|
418 |
-
# # Validate 'Answer' column in ground truth file
|
419 |
-
# if 'Answer' not in ground_truth_df.columns:
|
420 |
-
# return "Error: 'Answer' column is missing in the ground truth dataset.", load_leaderboard()
|
421 |
-
# merged_df = pd.merge(predictions_df, ground_truth_df, on='question_id', how='inner')
|
422 |
-
# merged_df['pred_answer'] = merged_df['predicted_answer'].apply(clean_answer)
|
423 |
-
|
424 |
-
# valid_predictions = merged_df.dropna(subset=['pred_answer'])
|
425 |
-
# correct_predictions = (valid_predictions['pred_answer'] == valid_predictions['Answer']).sum()
|
426 |
-
# total_predictions = len(merged_df)
|
427 |
-
# total_valid_predictions = len(valid_predictions)
|
428 |
-
|
429 |
-
# overall_accuracy = correct_predictions / total_predictions if total_predictions > 0 else 0
|
430 |
-
# valid_accuracy = correct_predictions / total_valid_predictions if total_valid_predictions > 0 else 0
|
431 |
-
|
432 |
-
# results = {
|
433 |
-
# 'model_name': model_name if model_name else "Unknown Model",
|
434 |
-
# 'overall_accuracy': overall_accuracy,
|
435 |
-
# 'valid_accuracy': valid_accuracy,
|
436 |
-
# 'correct_predictions': correct_predictions,
|
437 |
-
# 'total_questions': total_predictions,
|
438 |
-
# }
|
439 |
-
|
440 |
-
# if add_to_leaderboard:
|
441 |
-
# update_leaderboard(results)
|
442 |
-
# return "Evaluation completed and added to leaderboard.", load_leaderboard()
|
443 |
-
# else:
|
444 |
-
# return "Evaluation completed but not added to leaderboard.", load_leaderboard()
|
445 |
-
|
446 |
-
# except Exception as e:
|
447 |
-
# return f"Error during evaluation: {str(e)}", load_leaderboard()
|
448 |
-
|
449 |
-
# def evaluate_predictions(prediction_file, model_name,Team_name ,add_to_leaderboard):
|
450 |
-
# try:
|
451 |
-
# ground_truth_path = hf_hub_download(
|
452 |
-
# repo_id="SondosMB/ground-truth-dataset",
|
453 |
-
# filename="ground_truth.csv",
|
454 |
-
# repo_type="dataset",
|
455 |
-
# use_auth_token=True
|
456 |
-
# )
|
457 |
-
# ground_truth_df = pd.read_csv(ground_truth_path)
|
458 |
-
# except FileNotFoundError:
|
459 |
-
# return "Ground truth file not found in the dataset repository.", load_leaderboard()
|
460 |
-
# except Exception as e:
|
461 |
-
# return f"Error loading ground truth: {e}", load_leaderboard()
|
462 |
-
|
463 |
-
# if not prediction_file:
|
464 |
-
# return "Prediction file not uploaded.", load_leaderboard()
|
465 |
-
|
466 |
-
# try:
|
467 |
-
# #load prediction file
|
468 |
-
# predictions_df = pd.read_csv(prediction_file.name)
|
469 |
-
# # Validate required columns in prediction file
|
470 |
-
# required_columns = ['question_id', 'predicted_answer']
|
471 |
-
# missing_columns = [col for col in required_columns if col not in predictions_df.columns]
|
472 |
-
# if missing_columns:
|
473 |
-
# return (f"Error: Missing required columns in prediction file: {', '.join(missing_columns)}.",
|
474 |
-
# load_leaderboard())
|
475 |
-
|
476 |
-
# # Validate 'Answer' column in ground truth file
|
477 |
-
# if 'Answer' not in ground_truth_df.columns:
|
478 |
-
# return "Error: 'Answer' column is missing in the ground truth dataset.", load_leaderboard()
|
479 |
-
# merged_df = pd.merge(predictions_df, ground_truth_df, on='question_id', how='inner')
|
480 |
-
# merged_df['pred_answer'] = merged_df['predicted_answer'].apply(clean_answer)
|
481 |
-
|
482 |
-
# valid_predictions = merged_df.dropna(subset=['pred_answer'])
|
483 |
-
# correct_predictions = (valid_predictions['pred_answer'] == valid_predictions['Answer']).sum()
|
484 |
-
# total_predictions = len(merged_df)
|
485 |
-
|
486 |
-
# overall_accuracy = correct_predictions / total_predictions if total_predictions > 0 else 0
|
487 |
-
|
488 |
-
# results = {
|
489 |
-
# 'model_name': model_name if model_name else "Unknown Model",
|
490 |
-
# 'overall_accuracy': overall_accuracy,
|
491 |
-
# 'correct_predictions': correct_predictions,
|
492 |
-
# 'total_questions': total_predictions,
|
493 |
-
# 'Team_name': Team_name if Team_name else "Unknown Team",
|
494 |
-
# }
|
495 |
-
|
496 |
-
# if add_to_leaderboard:
|
497 |
-
# update_leaderboard(results)
|
498 |
-
# return "Evaluation completed and added to leaderboard.", load_leaderboard()
|
499 |
-
# else:
|
500 |
-
# return "Evaluation completed but not added to leaderboard.", load_leaderboard()
|
501 |
-
|
502 |
-
# except Exception as e:
|
503 |
-
# return f"Error during evaluation: {str(e)}", load_leaderboard()
|
504 |
-
# initialize_leaderboard_file()
|
505 |
|
506 |
def evaluate_predictions(prediction_file, model_name,Team_name ,add_to_leaderboard):
|
507 |
try:
|
|
|
20 |
if not HF_TOKEN:
|
21 |
raise ValueError("HF_TOKEN environment variable is not set or invalid.")
|
22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
def initialize_leaderboard_file():
|
27 |
"""
|
28 |
Ensure the leaderboard file exists and has the correct headers.
|
|
|
61 |
return clean[0].upper() if clean else None
|
62 |
|
63 |
|
64 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
def update_leaderboard(results):
|
67 |
"""
|
|
|
148 |
print(f"Error updating leaderboard file: {e}")
|
149 |
|
150 |
|
151 |
+
|
152 |
# def load_leaderboard():
|
153 |
# if not os.path.exists(LEADERBOARD_FILE) or os.stat(LEADERBOARD_FILE).st_size == 0:
|
154 |
# return pd.DataFrame({
|
155 |
# "Model Name": [],
|
156 |
# "Overall Accuracy": [],
|
|
|
157 |
# "Correct Predictions": [],
|
158 |
# "Total Questions": [],
|
159 |
# "Timestamp": [],
|
160 |
+
# "Team Name": [],
|
161 |
+
|
162 |
# })
|
163 |
# return pd.read_csv(LEADERBOARD_FILE)
|
164 |
|
|
|
165 |
def load_leaderboard():
|
166 |
if not os.path.exists(LEADERBOARD_FILE) or os.stat(LEADERBOARD_FILE).st_size == 0:
|
167 |
+
# Create an empty DataFrame with all expected columns
|
168 |
return pd.DataFrame({
|
169 |
"Model Name": [],
|
170 |
"Overall Accuracy": [],
|
|
|
172 |
"Total Questions": [],
|
173 |
"Timestamp": [],
|
174 |
"Team Name": [],
|
|
|
175 |
})
|
176 |
+
|
177 |
+
# Read the CSV file
|
178 |
+
df = pd.read_csv(LEADERBOARD_FILE)
|
179 |
+
|
180 |
+
# Ensure all columns exist
|
181 |
+
expected_columns = [
|
182 |
+
"Model Name",
|
183 |
+
"Overall Accuracy",
|
184 |
+
"Correct Predictions",
|
185 |
+
"Total Questions",
|
186 |
+
"Timestamp",
|
187 |
+
"Team Name"
|
188 |
+
]
|
189 |
+
|
190 |
+
# Add missing columns with default values
|
191 |
+
for col in expected_columns:
|
192 |
+
if col not in df.columns:
|
193 |
+
if col == "Timestamp":
|
194 |
+
df[col] = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
195 |
+
elif col == "Team Name":
|
196 |
+
df[col] = "Unknown Team"
|
197 |
+
else:
|
198 |
+
df[col] = None
|
199 |
+
|
200 |
+
# Remove duplicate entries based on Model Name
|
201 |
+
df = df.drop_duplicates(subset="Model Name", keep='last')
|
202 |
+
|
203 |
+
# Reorder columns to match expected structure
|
204 |
+
df = df[expected_columns]
|
205 |
+
|
206 |
+
return df
|
207 |
|
208 |
def load_leaderboard_pro():
|
209 |
if not os.path.exists(LEADERBOARD_FILE_pro) or os.stat(LEADERBOARD_FILE_pro).st_size == 0:
|
|
|
218 |
})
|
219 |
return pd.read_csv(LEADERBOARD_FILE_pro)
|
220 |
|
221 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
222 |
|
223 |
def evaluate_predictions(prediction_file, model_name,Team_name ,add_to_leaderboard):
|
224 |
try:
|