Update app.py
Browse files
app.py
CHANGED
@@ -183,6 +183,21 @@ def initialize_leaderboard_file():
|
|
183 |
"Total Questions", "Timestamp", "Team Name"
|
184 |
]).to_csv(LEADERBOARD_FILE, index=False)
|
185 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
186 |
def clean_answer(answer):
|
187 |
if pd.isna(answer):
|
188 |
return None
|
@@ -291,22 +306,22 @@ def update_leaderboard_pro(results):
|
|
291 |
try:
|
292 |
# Update the local leaderboard file
|
293 |
new_entry_df = pd.DataFrame([new_entry])
|
294 |
-
file_exists = os.path.exists(
|
295 |
|
296 |
new_entry_df.to_csv(
|
297 |
-
|
298 |
mode='a', # Append mode
|
299 |
index=False,
|
300 |
header=not file_exists # Write header only if the file is new
|
301 |
)
|
302 |
-
print(f"Leaderboard updated successfully at {
|
303 |
|
304 |
# Push the updated file to the Hugging Face repository using HTTP API
|
305 |
api = HfApi()
|
306 |
token = HfFolder.get_token()
|
307 |
|
308 |
api.upload_file(
|
309 |
-
path_or_fileobj=
|
310 |
path_in_repo="leaderboardPro.csv",
|
311 |
repo_id="SondosMB/Mobile-MMLU", # Your Space repository
|
312 |
repo_type="space",
|
@@ -343,6 +358,19 @@ def load_leaderboard():
|
|
343 |
|
344 |
})
|
345 |
return pd.read_csv(LEADERBOARD_FILE)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
346 |
|
347 |
# def evaluate_predictions(prediction_file, model_name, add_to_leaderboard):
|
348 |
# try:
|
@@ -486,7 +514,7 @@ def evaluate_predictions_pro(prediction_file, model_name,Team_name ,add_to_leade
|
|
486 |
missing_columns = [col for col in required_columns if col not in predictions_df.columns]
|
487 |
if missing_columns:
|
488 |
return (f"Error: Missing required columns in prediction file: {', '.join(missing_columns)}.",
|
489 |
-
|
490 |
|
491 |
# Validate 'Answer' column in ground truth file
|
492 |
if 'Answer' not in ground_truth_df.columns:
|
@@ -516,7 +544,7 @@ def evaluate_predictions_pro(prediction_file, model_name,Team_name ,add_to_leade
|
|
516 |
|
517 |
except Exception as e:
|
518 |
return f"Error during evaluation: {str(e)}", load_leaderboard_pro()
|
519 |
-
|
520 |
|
521 |
|
522 |
# Function to set default mode
|
@@ -1056,14 +1084,14 @@ with gr.Blocks(css=css_tech_theme) as demo:
|
|
1056 |
)
|
1057 |
with gr.TabItem("🏅 Leaderboard-pro"):
|
1058 |
leaderboard_table = gr.Dataframe(
|
1059 |
-
value=
|
1060 |
label="Leaderboard",
|
1061 |
interactive=False,
|
1062 |
wrap=True,
|
1063 |
)
|
1064 |
-
|
1065 |
-
|
1066 |
-
lambda:
|
1067 |
inputs=[],
|
1068 |
outputs=[leaderboard_table],
|
1069 |
)
|
|
|
183 |
"Total Questions", "Timestamp", "Team Name"
|
184 |
]).to_csv(LEADERBOARD_FILE, index=False)
|
185 |
|
186 |
+
def initialize_leaderboard_pro_file():
|
187 |
+
"""
|
188 |
+
Ensure the leaderboard file exists and has the correct headers.
|
189 |
+
"""
|
190 |
+
if not os.path.exists(LEADERBOARD_FILE_pro):
|
191 |
+
pd.DataFrame(columns=[
|
192 |
+
"Model Name", "Overall Accuracy", "Correct Predictions",
|
193 |
+
"Total Questions", "Timestamp", "Team Name"
|
194 |
+
]).to_csv(LEADERBOARD_FILE_pro, index=False)
|
195 |
+
elif os.stat(LEADERBOARD_FILE_pro).st_size == 0:
|
196 |
+
pd.DataFrame(columns=[
|
197 |
+
"Model Name", "Overall Accuracy", "Correct Predictions",
|
198 |
+
"Total Questions", "Timestamp", "Team Name"
|
199 |
+
]).to_csv(LEADERBOARD_FILE_pro, index=False)
|
200 |
+
|
201 |
def clean_answer(answer):
|
202 |
if pd.isna(answer):
|
203 |
return None
|
|
|
306 |
try:
|
307 |
# Update the local leaderboard file
|
308 |
new_entry_df = pd.DataFrame([new_entry])
|
309 |
+
file_exists = os.path.exists(LEADERBOARD_FILE_pro)
|
310 |
|
311 |
new_entry_df.to_csv(
|
312 |
+
LEADERBOARD_FILE_pro,
|
313 |
mode='a', # Append mode
|
314 |
index=False,
|
315 |
header=not file_exists # Write header only if the file is new
|
316 |
)
|
317 |
+
print(f"Leaderboard updated successfully at {LEADERBOARD_FILE_pro}")
|
318 |
|
319 |
# Push the updated file to the Hugging Face repository using HTTP API
|
320 |
api = HfApi()
|
321 |
token = HfFolder.get_token()
|
322 |
|
323 |
api.upload_file(
|
324 |
+
path_or_fileobj=LEADERBOARD_FILE_pro,
|
325 |
path_in_repo="leaderboardPro.csv",
|
326 |
repo_id="SondosMB/Mobile-MMLU", # Your Space repository
|
327 |
repo_type="space",
|
|
|
358 |
|
359 |
})
|
360 |
return pd.read_csv(LEADERBOARD_FILE)
|
361 |
+
|
362 |
+
def load_leaderboard_pro():
|
363 |
+
if not os.path.exists(LEADERBOARD_FILE_pro) or os.stat(LEADERBOARD_FILE_pro).st_size == 0:
|
364 |
+
return pd.DataFrame({
|
365 |
+
"Model Name": [],
|
366 |
+
"Overall Accuracy": [],
|
367 |
+
"Correct Predictions": [],
|
368 |
+
"Total Questions": [],
|
369 |
+
"Timestamp": [],
|
370 |
+
"Team Name": [],
|
371 |
+
|
372 |
+
})
|
373 |
+
return pd.read_csv(LEADERBOARD_FILE_pro)
|
374 |
|
375 |
# def evaluate_predictions(prediction_file, model_name, add_to_leaderboard):
|
376 |
# try:
|
|
|
514 |
missing_columns = [col for col in required_columns if col not in predictions_df.columns]
|
515 |
if missing_columns:
|
516 |
return (f"Error: Missing required columns in prediction file: {', '.join(missing_columns)}.",
|
517 |
+
load_leaderboard_pro())
|
518 |
|
519 |
# Validate 'Answer' column in ground truth file
|
520 |
if 'Answer' not in ground_truth_df.columns:
|
|
|
544 |
|
545 |
except Exception as e:
|
546 |
return f"Error during evaluation: {str(e)}", load_leaderboard_pro()
|
547 |
+
initialize_leaderboard_pro_file()
|
548 |
|
549 |
|
550 |
# Function to set default mode
|
|
|
1084 |
)
|
1085 |
with gr.TabItem("🏅 Leaderboard-pro"):
|
1086 |
leaderboard_table = gr.Dataframe(
|
1087 |
+
value=load_leaderboard_pro(),
|
1088 |
label="Leaderboard",
|
1089 |
interactive=False,
|
1090 |
wrap=True,
|
1091 |
)
|
1092 |
+
refresh_button_pro = gr.Button("Refresh Leaderboard-pro")
|
1093 |
+
refresh_button_pro.click(
|
1094 |
+
lambda: load_leaderboard_pro(),
|
1095 |
inputs=[],
|
1096 |
outputs=[leaderboard_table],
|
1097 |
)
|