Update app.py
Browse files
app.py
CHANGED
@@ -168,6 +168,20 @@ if not HF_TOKEN:
|
|
168 |
# "Correct Predictions", "Total Questions", "Timestamp"
|
169 |
# ]).to_csv(LEADERBOARD_FILE, index=False)
|
170 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
171 |
def initialize_leaderboard_file():
|
172 |
"""
|
173 |
Ensure the leaderboard file exists and has the correct headers.
|
@@ -181,8 +195,8 @@ def initialize_leaderboard_file():
|
|
181 |
pd.DataFrame(columns=[
|
182 |
"Model Name", "Overall Accuracy", "Correct Predictions",
|
183 |
"Total Questions", "Timestamp", "Team Name"
|
184 |
-
]).to_csv(LEADERBOARD_FILE, index=False)
|
185 |
-
|
186 |
def initialize_leaderboard_pro_file():
|
187 |
"""
|
188 |
Ensure the leaderboard file exists and has the correct headers.
|
@@ -430,6 +444,63 @@ def load_leaderboard_pro():
|
|
430 |
# except Exception as e:
|
431 |
# return f"Error during evaluation: {str(e)}", load_leaderboard()
|
432 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
433 |
def evaluate_predictions(prediction_file, model_name,Team_name ,add_to_leaderboard):
|
434 |
try:
|
435 |
ground_truth_path = hf_hub_download(
|
@@ -455,7 +526,7 @@ def evaluate_predictions(prediction_file, model_name,Team_name ,add_to_leaderboa
|
|
455 |
missing_columns = [col for col in required_columns if col not in predictions_df.columns]
|
456 |
if missing_columns:
|
457 |
return (f"Error: Missing required columns in prediction file: {', '.join(missing_columns)}.",
|
458 |
-
|
459 |
|
460 |
# Validate 'Answer' column in ground truth file
|
461 |
if 'Answer' not in ground_truth_df.columns:
|
@@ -484,9 +555,7 @@ def evaluate_predictions(prediction_file, model_name,Team_name ,add_to_leaderboa
|
|
484 |
return "Evaluation completed but not added to leaderboard.", load_leaderboard()
|
485 |
|
486 |
except Exception as e:
|
487 |
-
return f"Error during evaluation: {str(e)}", load_leaderboard()
|
488 |
-
initialize_leaderboard_file()
|
489 |
-
|
490 |
|
491 |
|
492 |
def evaluate_predictions_pro(prediction_file, model_name,Team_name ,add_to_leaderboard):
|
@@ -936,16 +1005,62 @@ with gr.Blocks(css=css_tech_theme) as demo:
|
|
936 |
|
937 |
|
938 |
|
939 |
-
def handle_evaluation(file, model_name, Team_name):
|
940 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
941 |
if not file:
|
942 |
-
print("π Evaluation function started 2") # Debugging print
|
943 |
return "Error: Please upload a prediction file.", 0, gr.update(visible=False)
|
944 |
if not model_name or model_name.strip() == "":
|
945 |
-
print("π Evaluation function started 3") # Debugging print
|
946 |
return "Error: Please enter a model name.", 0, gr.update(visible=False)
|
947 |
if not Team_name or Team_name.strip() == "":
|
948 |
-
print("π Evaluation function started 4") # Debugging print
|
949 |
return "Error: Please enter a Team name.", 0, gr.update(visible=False)
|
950 |
|
951 |
try:
|
@@ -984,9 +1099,9 @@ with gr.Blocks(css=css_tech_theme) as demo:
|
|
984 |
return "Evaluation completed successfully.", overall_accuracy, gr.update(visible=True)
|
985 |
|
986 |
except Exception as e:
|
987 |
-
return f"Error during evaluation: {str(e)}", 0, gr.update(visible=False)
|
988 |
|
989 |
-
def
|
990 |
if not file:
|
991 |
return "Error: Please upload a prediction file.", 0, gr.update(visible=False)
|
992 |
if not model_name or model_name.strip() == "":
|
@@ -1030,8 +1145,7 @@ with gr.Blocks(css=css_tech_theme) as demo:
|
|
1030 |
return "Evaluation completed successfully.", overall_accuracy, gr.update(visible=True)
|
1031 |
|
1032 |
except Exception as e:
|
1033 |
-
return f"Error during evaluation: {str(e)}", 0, gr.update(visible=False)
|
1034 |
-
|
1035 |
|
1036 |
|
1037 |
|
@@ -1060,6 +1174,12 @@ with gr.Blocks(css=css_tech_theme) as demo:
|
|
1060 |
outputs=[eval_status, overall_accuracy_display, submit_button_pro],
|
1061 |
)
|
1062 |
|
|
|
|
|
|
|
|
|
|
|
|
|
1063 |
submit_button_pro.click(
|
1064 |
handle_submission_pro,
|
1065 |
inputs=[file_input, model_name_input,Team_name_input],
|
|
|
168 |
# "Correct Predictions", "Total Questions", "Timestamp"
|
169 |
# ]).to_csv(LEADERBOARD_FILE, index=False)
|
170 |
|
171 |
+
# def initialize_leaderboard_file():
|
172 |
+
# """
|
173 |
+
# Ensure the leaderboard file exists and has the correct headers.
|
174 |
+
# """
|
175 |
+
# if not os.path.exists(LEADERBOARD_FILE):
|
176 |
+
# pd.DataFrame(columns=[
|
177 |
+
# "Model Name", "Overall Accuracy", "Correct Predictions",
|
178 |
+
# "Total Questions", "Timestamp", "Team Name"
|
179 |
+
# ]).to_csv(LEADERBOARD_FILE, index=False)
|
180 |
+
# elif os.stat(LEADERBOARD_FILE).st_size == 0:
|
181 |
+
# pd.DataFrame(columns=[
|
182 |
+
# "Model Name", "Overall Accuracy", "Correct Predictions",
|
183 |
+
# "Total Questions", "Timestamp", "Team Name"
|
184 |
+
# ]).to_csv(LEADERBOARD_FILE, index=False)
|
185 |
def initialize_leaderboard_file():
|
186 |
"""
|
187 |
Ensure the leaderboard file exists and has the correct headers.
|
|
|
195 |
pd.DataFrame(columns=[
|
196 |
"Model Name", "Overall Accuracy", "Correct Predictions",
|
197 |
"Total Questions", "Timestamp", "Team Name"
|
198 |
+
]).to_csv(LEADERBOARD_FILE, index=False)
|
199 |
+
|
200 |
def initialize_leaderboard_pro_file():
|
201 |
"""
|
202 |
Ensure the leaderboard file exists and has the correct headers.
|
|
|
444 |
# except Exception as e:
|
445 |
# return f"Error during evaluation: {str(e)}", load_leaderboard()
|
446 |
|
447 |
+
# def evaluate_predictions(prediction_file, model_name,Team_name ,add_to_leaderboard):
|
448 |
+
# try:
|
449 |
+
# ground_truth_path = hf_hub_download(
|
450 |
+
# repo_id="SondosMB/ground-truth-dataset",
|
451 |
+
# filename="ground_truth.csv",
|
452 |
+
# repo_type="dataset",
|
453 |
+
# use_auth_token=True
|
454 |
+
# )
|
455 |
+
# ground_truth_df = pd.read_csv(ground_truth_path)
|
456 |
+
# except FileNotFoundError:
|
457 |
+
# return "Ground truth file not found in the dataset repository.", load_leaderboard()
|
458 |
+
# except Exception as e:
|
459 |
+
# return f"Error loading ground truth: {e}", load_leaderboard()
|
460 |
+
|
461 |
+
# if not prediction_file:
|
462 |
+
# return "Prediction file not uploaded.", load_leaderboard()
|
463 |
+
|
464 |
+
# try:
|
465 |
+
# #load prediction file
|
466 |
+
# predictions_df = pd.read_csv(prediction_file.name)
|
467 |
+
# # Validate required columns in prediction file
|
468 |
+
# required_columns = ['question_id', 'predicted_answer']
|
469 |
+
# missing_columns = [col for col in required_columns if col not in predictions_df.columns]
|
470 |
+
# if missing_columns:
|
471 |
+
# return (f"Error: Missing required columns in prediction file: {', '.join(missing_columns)}.",
|
472 |
+
# load_leaderboard())
|
473 |
+
|
474 |
+
# # Validate 'Answer' column in ground truth file
|
475 |
+
# if 'Answer' not in ground_truth_df.columns:
|
476 |
+
# return "Error: 'Answer' column is missing in the ground truth dataset.", load_leaderboard()
|
477 |
+
# merged_df = pd.merge(predictions_df, ground_truth_df, on='question_id', how='inner')
|
478 |
+
# merged_df['pred_answer'] = merged_df['predicted_answer'].apply(clean_answer)
|
479 |
+
|
480 |
+
# valid_predictions = merged_df.dropna(subset=['pred_answer'])
|
481 |
+
# correct_predictions = (valid_predictions['pred_answer'] == valid_predictions['Answer']).sum()
|
482 |
+
# total_predictions = len(merged_df)
|
483 |
+
|
484 |
+
# overall_accuracy = correct_predictions / total_predictions if total_predictions > 0 else 0
|
485 |
+
|
486 |
+
# results = {
|
487 |
+
# 'model_name': model_name if model_name else "Unknown Model",
|
488 |
+
# 'overall_accuracy': overall_accuracy,
|
489 |
+
# 'correct_predictions': correct_predictions,
|
490 |
+
# 'total_questions': total_predictions,
|
491 |
+
# 'Team_name': Team_name if Team_name else "Unknown Team",
|
492 |
+
# }
|
493 |
+
|
494 |
+
# if add_to_leaderboard:
|
495 |
+
# update_leaderboard(results)
|
496 |
+
# return "Evaluation completed and added to leaderboard.", load_leaderboard()
|
497 |
+
# else:
|
498 |
+
# return "Evaluation completed but not added to leaderboard.", load_leaderboard()
|
499 |
+
|
500 |
+
# except Exception as e:
|
501 |
+
# return f"Error during evaluation: {str(e)}", load_leaderboard()
|
502 |
+
# initialize_leaderboard_file()
|
503 |
+
|
504 |
def evaluate_predictions(prediction_file, model_name,Team_name ,add_to_leaderboard):
|
505 |
try:
|
506 |
ground_truth_path = hf_hub_download(
|
|
|
526 |
missing_columns = [col for col in required_columns if col not in predictions_df.columns]
|
527 |
if missing_columns:
|
528 |
return (f"Error: Missing required columns in prediction file: {', '.join(missing_columns)}.",
|
529 |
+
load_leaderboard_pro())
|
530 |
|
531 |
# Validate 'Answer' column in ground truth file
|
532 |
if 'Answer' not in ground_truth_df.columns:
|
|
|
555 |
return "Evaluation completed but not added to leaderboard.", load_leaderboard()
|
556 |
|
557 |
except Exception as e:
|
558 |
+
return f"Error during evaluation: {str(e)}", load_leaderboard(),initialize_leaderboard_file()
|
|
|
|
|
559 |
|
560 |
|
561 |
def evaluate_predictions_pro(prediction_file, model_name,Team_name ,add_to_leaderboard):
|
|
|
1005 |
|
1006 |
|
1007 |
|
1008 |
+
# def handle_evaluation(file, model_name, Team_name):
|
1009 |
+
# print("π Evaluation function started 1") # Debugging print
|
1010 |
+
# if not file:
|
1011 |
+
# print("π Evaluation function started 2") # Debugging print
|
1012 |
+
# return "Error: Please upload a prediction file.", 0, gr.update(visible=False)
|
1013 |
+
# if not model_name or model_name.strip() == "":
|
1014 |
+
# print("π Evaluation function started 3") # Debugging print
|
1015 |
+
# return "Error: Please enter a model name.", 0, gr.update(visible=False)
|
1016 |
+
# if not Team_name or Team_name.strip() == "":
|
1017 |
+
# print("π Evaluation function started 4") # Debugging print
|
1018 |
+
# return "Error: Please enter a Team name.", 0, gr.update(visible=False)
|
1019 |
+
|
1020 |
+
# try:
|
1021 |
+
# # Load predictions file
|
1022 |
+
# predictions_df = pd.read_csv(file.name)
|
1023 |
+
|
1024 |
+
# # Validate required columns
|
1025 |
+
# required_columns = ['question_id', 'predicted_answer']
|
1026 |
+
# missing_columns = [col for col in required_columns if col not in predictions_df.columns]
|
1027 |
+
# if missing_columns:
|
1028 |
+
# return (f"Error: Missing required columns in prediction file: {', '.join(missing_columns)}.",
|
1029 |
+
# 0, gr.update(visible=False))
|
1030 |
+
|
1031 |
+
# # Load ground truth
|
1032 |
+
# try:
|
1033 |
+
# ground_truth_path = hf_hub_download(
|
1034 |
+
# repo_id="SondosMB/ground-truth-dataset",
|
1035 |
+
# filename="ground_truth.csv",
|
1036 |
+
# repo_type="dataset",
|
1037 |
+
# use_auth_token=True
|
1038 |
+
# )
|
1039 |
+
# ground_truth_df = pd.read_csv(ground_truth_path)
|
1040 |
+
# except Exception as e:
|
1041 |
+
# return f"Error loading ground truth: {e}", 0, gr.update(visible=False)
|
1042 |
+
|
1043 |
+
# # Perform evaluation calculations
|
1044 |
+
# merged_df = pd.merge(predictions_df, ground_truth_df, on='question_id', how='inner')
|
1045 |
+
# merged_df['pred_answer'] = merged_df['predicted_answer'].apply(clean_answer)
|
1046 |
+
|
1047 |
+
# valid_predictions = merged_df.dropna(subset=['pred_answer'])
|
1048 |
+
# correct_predictions = (valid_predictions['pred_answer'] == valid_predictions['Answer']).sum()
|
1049 |
+
# total_predictions = len(merged_df)
|
1050 |
+
|
1051 |
+
# overall_accuracy = (correct_predictions / total_predictions * 100) if total_predictions > 0 else 0
|
1052 |
+
|
1053 |
+
# return "Evaluation completed successfully.", overall_accuracy, gr.update(visible=True)
|
1054 |
+
|
1055 |
+
# except Exception as e:
|
1056 |
+
# return f"Error during evaluation: {str(e)}", 0, gr.update(visible=False)
|
1057 |
+
|
1058 |
+
def handle_evaluation_pro(file, model_name, Team_name):
|
1059 |
if not file:
|
|
|
1060 |
return "Error: Please upload a prediction file.", 0, gr.update(visible=False)
|
1061 |
if not model_name or model_name.strip() == "":
|
|
|
1062 |
return "Error: Please enter a model name.", 0, gr.update(visible=False)
|
1063 |
if not Team_name or Team_name.strip() == "":
|
|
|
1064 |
return "Error: Please enter a Team name.", 0, gr.update(visible=False)
|
1065 |
|
1066 |
try:
|
|
|
1099 |
return "Evaluation completed successfully.", overall_accuracy, gr.update(visible=True)
|
1100 |
|
1101 |
except Exception as e:
|
1102 |
+
return f"Error during evaluation: {str(e)}", 0, gr.update(visible=False)
|
1103 |
|
1104 |
+
def handle_evaluation(file, model_name, Team_name):
|
1105 |
if not file:
|
1106 |
return "Error: Please upload a prediction file.", 0, gr.update(visible=False)
|
1107 |
if not model_name or model_name.strip() == "":
|
|
|
1145 |
return "Evaluation completed successfully.", overall_accuracy, gr.update(visible=True)
|
1146 |
|
1147 |
except Exception as e:
|
1148 |
+
return f"Error during evaluation: {str(e)}", 0, gr.update(visible=False)
|
|
|
1149 |
|
1150 |
|
1151 |
|
|
|
1174 |
outputs=[eval_status, overall_accuracy_display, submit_button_pro],
|
1175 |
)
|
1176 |
|
1177 |
+
eval_button.click(
|
1178 |
+
handle_evaluation,
|
1179 |
+
inputs=[file_input, model_name_input,Team_name_input],
|
1180 |
+
outputs=[eval_status, overall_accuracy_display, submit_button_pro],
|
1181 |
+
)
|
1182 |
+
|
1183 |
submit_button_pro.click(
|
1184 |
handle_submission_pro,
|
1185 |
inputs=[file_input, model_name_input,Team_name_input],
|