import gradio as gr import pandas as pd import os import re from datetime import datetime # Leaderboard Data (example CSV file for leaderboard) LEADERBOARD_FILE = "leaderboard.csv" def clean_answer(answer): if pd.isna(answer): return None answer = str(answer) clean = re.sub(r'[^A-Da-d]', '', answer) if clean: first_letter = clean[0].upper() if first_letter in ['A', 'B', 'C', 'D']: return first_letter return None def update_leaderboard(results): # Append results to leaderboard file new_entry = { "Model Name": results['model_name'], "Overall Accuracy": f"{results['overall_accuracy']:.2%}", "Valid Accuracy": f"{results['valid_accuracy']:.2%}", "Correct Predictions": results['correct_predictions'], "Total Questions": results['total_questions'], "Timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"), } leaderboard_df = pd.DataFrame([new_entry]) if os.path.exists(LEADERBOARD_FILE): existing_df = pd.read_csv(LEADERBOARD_FILE) leaderboard_df = pd.concat([existing_df, leaderboard_df], ignore_index=True) leaderboard_df.to_csv(LEADERBOARD_FILE, index=False) def evaluate_predictions(prediction_file): ground_truth_file = "ground_truth.csv" # Specify the path to the ground truth file if not prediction_file: return "Prediction file not uploaded", None if not os.path.exists(ground_truth_file): return "Ground truth file not found", None try: predictions_df = pd.read_csv(prediction_file.name) ground_truth_df = pd.read_csv(ground_truth_file) filename = os.path.basename(prediction_file.name) model_name = filename.split('_')[1].split('.')[0] if "_" in filename else "unknown_model" merged_df = pd.merge(predictions_df, ground_truth_df, on='question_id', how='inner') merged_df['pred_answer'] = merged_df['predicted_answer'].apply(clean_answer) correct_predictions = (merged_df['pred_answer'] == merged_df['Answer']).sum() total_predictions = len(merged_df) overall_accuracy = correct_predictions / total_predictions results = { 'model_name': model_name, 'overall_accuracy': overall_accuracy, 'correct_predictions': correct_predictions, 'total_questions': total_predictions, } update_leaderboard(results) return "Evaluation completed successfully! Leaderboard updated.", LEADERBOARD_FILE except Exception as e: return f"Error: {str(e)}", None # Gradio Interface with Leaderboard def display_leaderboard(): if not os.path.exists(LEADERBOARD_FILE): return "Leaderboard is empty." leaderboard_df = pd.read_csv(LEADERBOARD_FILE) return leaderboard_df.to_markdown(index=False) demo = gr.Blocks() with demo: gr.Markdown("# Prediction Evaluation Tool with Leaderboard") with gr.Tab("Evaluate"): file_input = gr.File(label="Upload Prediction CSV") eval_status = gr.Textbox(label="Evaluation Status") eval_results_file = gr.File(label="Download Evaluation Results") eval_button = gr.Button("Evaluate") eval_button.click( evaluate_predictions, inputs=file_input, outputs=[eval_status, eval_results_file] ) with gr.Tab("Leaderboard"): leaderboard_text = gr.Textbox(label="Leaderboard", interactive=False) refresh_button = gr.Button("Refresh Leaderboard") refresh_button.click(display_leaderboard, outputs=leaderboard_text) if __name__ == "__main__": demo.launch()