File size: 1,606 Bytes
5920b49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
"""
This is just a utility that I use to extract the projector for quantized models.
It is NOT necessary at all to train, or run inference/serve demos.
Use this script ONLY if you fully understand its implications.
"""


import os
import argparse
import torch
import json
from collections import defaultdict


def parse_args():
    parser = argparse.ArgumentParser(description='Extract MMProjector weights')
    parser.add_argument('--model-path', type=str, help='model folder')
    parser.add_argument('--output', type=str, help='output file')
    args = parser.parse_args()
    return args


if __name__ == '__main__':
    args = parse_args()

    keys_to_match = ['mm_projector']
    ckpt_to_key = defaultdict(list)
    try:
        model_indices = json.load(open(os.path.join(args.model_path, 'pytorch_model.bin.index.json')))
        for k, v in model_indices['weight_map'].items():
            if any(key_match in k for key_match in keys_to_match):
                ckpt_to_key[v].append(k)
    except FileNotFoundError:
        # Smaller models or model checkpoints saved by DeepSpeed.
        v = 'pytorch_model.bin'
        for k in torch.load(os.path.join(args.model_path, v), map_location='cpu').keys():
            if any(key_match in k for key_match in keys_to_match):
                ckpt_to_key[v].append(k)

    loaded_weights = {}

    for ckpt_name, weight_keys in ckpt_to_key.items():
        ckpt = torch.load(os.path.join(args.model_path, ckpt_name), map_location='cpu')
        for k in weight_keys:
            loaded_weights[k] = ckpt[k]

    torch.save(loaded_weights, args.output)