File size: 11,769 Bytes
62e9ca6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
# --------------------------------------------------------
# Pre-Training Transformer Decoder for End-to-End ASR Model with Unpaired Speech Data (https://arxiv.org/abs/2203.17113)
# Github source: https://github.com/microsoft/SpeechT5/tree/main/Speech2C
# Copyright (c) 2022 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Based on fairseq code bases
# https://github.com/pytorch/fairseq
# --------------------------------------------------------

import math
import re
from dataclasses import dataclass, field

import torch
import torch.nn.functional as F
from fairseq import metrics, utils
from fairseq.criterions import FairseqCriterion, register_criterion
from fairseq.criterions.label_smoothed_cross_entropy import label_smoothed_nll_loss
from fairseq.criterions.hubert_criterion import HubertCriterionConfig

@dataclass
class Speech2cCriterionConfig(HubertCriterionConfig):
    dec_weight: float = field(
        default=1.0,
        metadata={"help": "weights for decoder CE Loss, loss will be (hubert_loss + dec_weight * CE_Loss)"},
    )
    report_accuracy: bool = field(
        default=True,
        metadata={"help": "report decoder accuracy metric"},
    )
    ignore_prefix_size: int = field(
        default=0,
        metadata={"help": "Ignore first N tokens"},
    )
    label_smoothing: float = field(
        default=0.0,
        metadata={"help": "epsilon for label smoothing, 0 means no label smoothing"},
    )


@register_criterion("speech2c", dataclass=Speech2cCriterionConfig)
class Speech2cCriterion(FairseqCriterion):
    def __init__(self, task, pred_masked_weight, pred_nomask_weight, loss_weights=None, log_keys=None, dec_weight=1.0, report_accuracy=False, ignore_prefix_size=0, label_smoothing=0.0):
        super().__init__(task)
        self.pred_masked_weight = pred_masked_weight
        self.pred_nomask_weight = pred_nomask_weight
        self.loss_weights = loss_weights
        self.log_keys = [] if log_keys is None else log_keys
        self.dec_weight = dec_weight
        self.report_accuracy = report_accuracy
        self.ignore_prefix_size = ignore_prefix_size
        self.eps = label_smoothing
        self.padding_idx = task.dictionaries[0].pad()

    def forward(self, model, sample, reduce=True, log_pred=False):
        """Compute the loss for the given sample.
        Returns a tuple with three elements:
        1) the loss
        2) the sample size, which is used as the denominator for the gradient
        3) logging outputs to display while training
        """
        net_output = model(target_list=sample["target_list"], **sample["net_input"])
        loss = 0.0
        sample_size = 0
        logging_output = {}
        reduction = "sum" if reduce else "none"

        loss_m_list = []
        logp_m_list = model.get_logits(net_output, True)
        targ_m_list = model.get_targets(net_output, True)
        assert self.pred_masked_weight == 0 or len(logp_m_list) > 0
        for i, (logp_m, targ_m) in enumerate(zip(logp_m_list, targ_m_list)):
            loss_m = F.cross_entropy(logp_m, targ_m, reduction=reduction)
            loss_m_list.append(loss_m)
            logging_output[f"loss_m_{i}"] = loss_m.detach().item()
        if self.pred_masked_weight > 0:
            loss += self.pred_masked_weight * sum(loss_m_list)
            sample_size += targ_m_list[0].numel()

        loss_u_list = []
        logp_u_list = model.get_logits(net_output, False)
        targ_u_list = model.get_targets(net_output, False)
        assert self.pred_nomask_weight == 0 or len(logp_u_list) > 0
        for i, (logp_u, targ_u) in enumerate(zip(logp_u_list, targ_u_list)):
            loss_u = F.cross_entropy(logp_u, targ_u, reduction=reduction)
            loss_u_list.append(loss_u)
            logging_output[f"loss_u_{i}"] = loss_u.detach().item()
        if self.pred_nomask_weight > 0:
            loss += self.pred_nomask_weight * sum(loss_u_list)
            sample_size += targ_u_list[0].numel()

        if self.loss_weights is not None:
            assert hasattr(model, "get_extra_losses")
            extra_losses, names = model.get_extra_losses(net_output)
            if torch.is_tensor(extra_losses):
                extra_losses = [extra_losses]
                names = [names]
            if len(self.loss_weights) == 1 and len(extra_losses) != 1:
                self.loss_weights = [self.loss_weights[0]] * len(extra_losses)
            assert len(extra_losses) == len(
                self.loss_weights
            ), f"{len(extra_losses)}, {len(self.loss_weights)}"
            for p, n, coef in zip(extra_losses, names, self.loss_weights):
                if coef != 0 and p is not None:
                    p = coef * p.float() * sample_size
                    loss += p
                    logging_output[f"loss_{n}"] = p.item()

        if "decoder_target" in sample:
            dec_sample_size = sample["dec_ntokens"]
            dec_loss, dec_nll_loss = self.compute_ce_loss(model, net_output["decoder_out"], sample, reduce=reduce)
            loss = loss + (self.dec_weight * dec_loss *  sample_size / dec_sample_size)
            logging_output["dec_loss"] = dec_loss.item()
            logging_output["dec_nll_loss"] = dec_nll_loss.item()
            logging_output["dec_sample_size"] = dec_sample_size

            if self.report_accuracy:
                n_correct, total = self.compute_accuracy(model, net_output["decoder_out"], sample)
                logging_output["dec_n_correct"] = utils.item(n_correct.data)
                logging_output["total"] = utils.item(total.data)

        logging_output = {
            "loss": loss.item() if reduce else loss,
            "ntokens": sample_size,
            "nsentences": sample["id"].numel(),
            "sample_size": sample_size,
            **logging_output,
        }

        for lk in self.log_keys:
            if lk in net_output:
                logging_output[lk] = float((net_output[lk]))

        def compute_correct(logits):
            if logits.numel() == 0:
                return 0, 0
            else:
                assert logits.dim() > 1, logits.shape
                max = logits.argmax(-1) == 0
                min = logits.argmin(-1) == 0
                both = max & min
                corr = max.long().sum().item() - both.long().sum().item()
                count = max.numel()
                return corr, count

        with torch.no_grad():
            for i, logp_m in enumerate(logp_m_list):
                corr_m, count_m = compute_correct(logp_m)
                logging_output[f"correct_m_{i}"] = corr_m
                logging_output[f"count_m_{i}"] = count_m

            for i, logp_u in enumerate(logp_u_list):
                corr_u, count_u = compute_correct(logp_u)
                logging_output[f"correct_u_{i}"] = corr_u
                logging_output[f"count_u_{i}"] = count_u

        return loss, sample_size, logging_output

    def compute_ce_loss(self, model, net_output, sample, reduce=True):
        lprobs, target = self.get_lprobs_and_target(model, net_output, sample)
        loss, nll_loss = label_smoothed_nll_loss(
            lprobs,
            target,
            self.eps,
            ignore_index=self.padding_idx,
            reduce=reduce,
        )
        return loss, nll_loss

    def compute_accuracy(self, model, net_output, sample):
        lprobs, target = self.get_lprobs_and_target(model, net_output, sample)
        mask = target.ne(self.padding_idx)
        n_correct = torch.sum(
            lprobs.argmax(1).masked_select(mask).eq(target.masked_select(mask))
        )
        total = torch.sum(mask)
        return n_correct, total

    def get_lprobs_and_target(self, model, net_output, sample):
        lprobs = model.get_normalized_probs(net_output, log_probs=True)
        target = sample["decoder_target"]
        if self.ignore_prefix_size > 0:
            if getattr(lprobs, "batch_first", False):
                lprobs = lprobs[:, self.ignore_prefix_size :, :].contiguous()
                target = target[:, self.ignore_prefix_size :].contiguous()
            else:
                lprobs = lprobs[self.ignore_prefix_size :, :, :].contiguous()
                target = target[self.ignore_prefix_size :, :].contiguous()
        return lprobs.view(-1, lprobs.size(-1)), target.view(-1)

    @staticmethod
    def reduce_metrics(logging_outputs) -> None:
        """Aggregate logging outputs from data parallel training (copied from normal cross entropy)."""
        loss_sum = sum(log.get("loss", 0) for log in logging_outputs)
        ntokens = sum(log.get("ntokens", 0) for log in logging_outputs)
        sample_size = sum(log.get("sample_size", 0) for log in logging_outputs)

        metrics.log_scalar("loss", loss_sum / sample_size / math.log(2), sample_size, round=3)
        if sample_size != ntokens:
            metrics.log_scalar("nll_loss", loss_sum / ntokens / math.log(2), ntokens, round=3)
            metrics.log_derived("ppl", lambda meters: utils.get_perplexity(meters["nll_loss"].avg))
        else:
            metrics.log_derived("ppl", lambda meters: utils.get_perplexity(meters["loss"].avg))

        counts = {}
        for lk in logging_outputs[0].keys():
            if lk.startswith("count_"):
                val = sum(log[lk] for log in logging_outputs)
                metrics.log_scalar(lk, val)
                counts[lk] = val

        for lk in logging_outputs[0].keys():
            if lk.startswith("loss_"):
                val = sum(log[lk] for log in logging_outputs)
                metrics.log_scalar(lk, val / sample_size / math.log(2), round=3)
            elif lk.startswith("correct_"):
                val = sum(log[lk] for log in logging_outputs)
                metrics.log_scalar(lk, val / counts[re.sub("correct", "count", lk)])

        if "dec_loss" in logging_outputs[0]:
            dec_loss_sum = sum(log.get("dec_loss", 0) for log in logging_outputs)
            dec_nll_loss_sum = sum(log.get("dec_nll_loss", 0) for log in logging_outputs)
            dec_sample_size = sum(log.get("dec_sample_size", 0) for log in logging_outputs)
            metrics.log_scalar(
                "dec_loss", dec_loss_sum / dec_sample_size / math.log(2), dec_sample_size, round=3
            )
            metrics.log_scalar(
                "dec_nll_loss", dec_nll_loss_sum / dec_sample_size / math.log(2), dec_sample_size, round=3
            )
            metrics.log_derived(
                "dec_ppl", lambda meters: utils.get_perplexity(meters["dec_nll_loss"].avg)
            )
            total = utils.item(sum(log.get("total", 0) for log in logging_outputs))
            if total > 0:
                metrics.log_scalar("total", total)
                n_correct = utils.item(
                    sum(log.get("dec_n_correct", 0) for log in logging_outputs)
                )
                metrics.log_scalar("dec_n_correct", n_correct)
                metrics.log_derived(
                    "dec_accuracy",
                    lambda meters: round(
                        meters["dec_n_correct"].sum * 100.0 / meters["total"].sum, 3
                    )
                    if meters["total"].sum > 0
                    else float("nan"),
                )

    @staticmethod
    def aggregate_logging_outputs(logging_outputs):
        """Aggregate logging outputs from data parallel training."""
        raise NotImplementedError()

    @staticmethod
    def logging_outputs_can_be_summed() -> bool:
        """
        Whether the logging outputs returned by `forward` can be summed
        across workers prior to calling `reduce_metrics`. Setting this
        to True will improves distributed training speed.
        """
        return False