File size: 10,732 Bytes
62e9ca6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
# --------------------------------------------------------
# Pre-Training Transformer Decoder for End-to-End ASR Model with Unpaired Speech Data (https://arxiv.org/abs/2203.17113)
# Github source: https://github.com/microsoft/SpeechT5/tree/main/Speech2C
# Copyright (c) 2022 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Based on fairseq code bases
# https://github.com/pytorch/fairseq
# --------------------------------------------------------

from argparse import Namespace
from omegaconf import II

import torch.nn as nn
from dataclasses import dataclass, field
from fairseq import checkpoint_utils, tasks, utils
from fairseq.dataclass.utils import convert_namespace_to_omegaconf
from fairseq.models import BaseFairseqModel, FairseqEncoder, register_model
from fairseq.models.hubert.hubert_asr import HubertAsrConfig, Linear
from fairseq.tasks import FairseqTask


@dataclass
class Speech2cAsrConfig(HubertAsrConfig):
    # for decoder
    decoder_layerdrop: float = field(
        default=0.0,
        metadata={"help": "probability of dropping a decoder layer in hubert"},
    )

    add_decoder: bool = II("task.add_decoder")

@dataclass
class Speech2cCtcConfig(Speech2cAsrConfig):
    pass


@register_model("speech2c_ctc", dataclass=Speech2cCtcConfig)
class Speech2cCtc(BaseFairseqModel):
    def __init__(self, cfg: Speech2cCtcConfig, w2v_encoder: BaseFairseqModel):
        super().__init__()
        self.cfg = cfg
        self.w2v_encoder = w2v_encoder

    def upgrade_state_dict_named(self, state_dict, name):
        super().upgrade_state_dict_named(state_dict, name)
        return state_dict

    @classmethod
    def build_model(cls, cfg: Speech2cCtcConfig, task: FairseqTask):
        """Build a new model instance."""
        w2v_encoder = Speech2cEncoder(cfg, task.target_dictionary)
        return cls(cfg, w2v_encoder)

    def get_normalized_probs(self, net_output, log_probs, sample=None):
        """Get normalized probabilities (or log probs) from a net's output."""
        if "encoder_out" not in net_output:
            return self.w2v_encoder.get_normalized_probs_decoder(net_output, log_probs, sample)

        if "encoder_out_for_ctc" in net_output:
            logits = net_output["encoder_out_for_ctc"]
        else:
            logits = net_output["encoder_out"]
        
        if isinstance(logits, list):
            logits = logits[0]

        if log_probs:
            return utils.log_softmax(logits.float(), dim=-1)
        else:
            return utils.softmax(logits.float(), dim=-1)

    def get_logits(self, net_output):
        logits = net_output["encoder_out"]
        padding = net_output["encoder_padding_mask"]
        if padding is not None and padding.any():
            padding = padding.T
            logits[padding][..., 0] = 0
            logits[padding][..., 1:] = float("-inf")

        return logits

    def forward(self, **kwargs):
        x = self.w2v_encoder(**kwargs)
        return x

    @property
    def encoder(self):
        return self.w2v_encoder

    def reorder_encoder_out(self, encoder_out, new_order):
        return self.encoder.reorder_encoder_out(encoder_out, new_order)

    @property
    def decoder(self):
        return self.w2v_encoder.w2v_model.decoder


class Speech2cEncoder(FairseqEncoder):
    def __init__(self, cfg: Speech2cAsrConfig, tgt_dict=None):
        self.apply_mask = cfg.apply_mask

        arg_overrides = {
            "dropout": cfg.dropout,
            "activation_dropout": cfg.activation_dropout,
            "dropout_input": cfg.dropout_input,
            "attention_dropout": cfg.attention_dropout,
            "mask_length": cfg.mask_length,
            "mask_prob": cfg.mask_prob,
            "mask_selection": cfg.mask_selection,
            "mask_other": cfg.mask_other,
            "no_mask_overlap": cfg.no_mask_overlap,
            "mask_channel_length": cfg.mask_channel_length,
            "mask_channel_prob": cfg.mask_channel_prob,
            "mask_channel_selection": cfg.mask_channel_selection,
            "mask_channel_other": cfg.mask_channel_other,
            "no_mask_channel_overlap": cfg.no_mask_channel_overlap,
            "encoder_layerdrop": cfg.layerdrop,
            "decoder_layerdrop": cfg.decoder_layerdrop,
            "feature_grad_mult": cfg.feature_grad_mult,
            "decoder_dict_size": len(tgt_dict) if cfg.add_decoder else -1,
        }

        if cfg.w2v_args is None:
            state = checkpoint_utils.load_checkpoint_to_cpu(cfg.w2v_path, arg_overrides)
            w2v_args = state.get("cfg", None)
            if w2v_args is None:
                w2v_args = convert_namespace_to_omegaconf(state["args"])
            cfg.w2v_args = w2v_args
        else:
            state = None
            w2v_args = cfg.w2v_args
            if isinstance(w2v_args, Namespace):
                cfg.w2v_args = w2v_args = convert_namespace_to_omegaconf(w2v_args)

        assert cfg.normalize == w2v_args.task.normalize, (
            "Fine-tuning works best when data normalization is the same. "
            "Please check that --normalize is set or unset for "
            "both pre-training and here"
        )

        w2v_args.task.data = cfg.data
        w2v_args.task.add_decoder = cfg.add_decoder
        task = tasks.setup_task(w2v_args.task)
        if state is not None and "task_state" in state:
            # This will load the stored "dictionaries" object
            task.load_state_dict(state["task_state"])
        model = task.build_model(w2v_args.model)

        if state is not None and not cfg.no_pretrained_weights:
            if "decoder.embed_tokens.weight" in state["model"]:
                del state["model"]["decoder.embed_tokens.weight"]
            if "decoder.output_projection.weight" in state["model"]:
                del state["model"]["decoder.output_projection.weight"]
            # set strict=False because we omit some modules
            model.load_state_dict(state["model"], strict=False)

        model.remove_pretraining_modules()

        super().__init__(task.source_dictionary)

        d = model.mask_emb.size(0)

        self.w2v_model = model

        self.final_dropout = nn.Dropout(cfg.final_dropout)
        self.freeze_finetune_updates = cfg.freeze_finetune_updates
        self.num_updates = 0

        if tgt_dict is not None:
            self.proj = Linear(d, len(tgt_dict))
        elif getattr(cfg, "decoder_embed_dim", d) != d:
            self.proj = Linear(d, cfg.decoder_embed_dim)
        else:
            self.proj = None

    def set_num_updates(self, num_updates):
        """Set the number of parameters updates."""
        super().set_num_updates(num_updates)
        self.num_updates = num_updates

    def forward(self, source, padding_mask, prev_output_tokens=None, tbc=True, **kwargs):

        ft = self.freeze_finetune_updates <= self.num_updates
        w2v_args = {
            "source": source,
            "padding_mask": padding_mask,
            "mask": self.apply_mask and self.training,
            "prev_output_tokens": prev_output_tokens,
            "ft": ft,
        }

        x, padding_mask, decoder_out = self.w2v_model.extract_features(**w2v_args)
        
        if tbc:
            # B x T x C -> T x B x C
            x = x.transpose(0, 1)

        x = self.final_dropout(x)

        if self.proj:
            x = self.proj(x)

        return {
            "encoder_out": x,  # T x B x C
            "encoder_padding_mask": padding_mask,  # B x T
            "padding_mask": padding_mask,
            "decoder_out": decoder_out,
        }

    def get_normalized_probs_decoder(self, net_output, log_probs, sample=None):
        # net_output['encoder_out'] is a (B, T, D) tensor
        return self.w2v_model.get_normalized_probs(net_output, log_probs, sample)

    def reorder_encoder_out(self, encoder_out, new_order):
        if encoder_out["encoder_out"] is not None:
            if isinstance(encoder_out["encoder_out"], list):
                encoder_out["encoder_out"] = (
                    [] if len(encoder_out["encoder_out"]) == 0
                    else [x.index_select(1, new_order) for x in encoder_out["encoder_out"]]
                )
            else:
                encoder_out["encoder_out"] = encoder_out[
                    "encoder_out"
                ].index_select(1, new_order)
        if encoder_out["encoder_padding_mask"] is not None:
            if isinstance(encoder_out["encoder_padding_mask"], list):
                encoder_out["encoder_padding_mask"] = (
                    [] if len(encoder_out["encoder_padding_mask"]) == 0
                    else [x.index_select(0, new_order) for x in encoder_out["encoder_padding_mask"]]
                )
            else:
                encoder_out["encoder_padding_mask"] = encoder_out[
                    "encoder_padding_mask"
                ].index_select(0, new_order)
        if "decoder_out" in encoder_out and encoder_out["decoder_out"] is not None:
            if isinstance(encoder_out["decoder_out"], list):
                encoder_out["decoder_out"] = (
                    [] if len(encoder_out["decoder_out"]) == 0
                    else [x.index_select(0, new_order) for x in encoder_out["decoder_out"]]
                )
            else:
                encoder_out["decoder_out"] = encoder_out[
                    "decoder_out"
                ].index_select(0, new_order)
        if "encoder_out_for_ctc" in encoder_out and encoder_out["encoder_out_for_ctc"] is not None:
            if isinstance(encoder_out["encoder_out_for_ctc"], list):
                encoder_out["encoder_out_for_ctc"] = (
                    [] if len(encoder_out["encoder_out_for_ctc"]) == 0
                    else [x.index_select(1, new_order) for x in encoder_out["encoder_out_for_ctc"]]
                )
            else:
                encoder_out["encoder_out_for_ctc"] = encoder_out[
                    "encoder_out_for_ctc"
                ].index_select(1, new_order)

        return encoder_out

    def forward_torchscript(self, net_input):
        """A TorchScript-compatible version of forward.
        Encoders which use additional arguments may want to override
        this method for TorchScript compatibility.
        """
        encoder_out = self.w2v_model.forward_torchscript(net_input)
        
        assert self.proj is not None
        encoder_out['encoder_out_for_ctc'] = [self.proj(encoder_out['encoder_out'][0])]
        
        return encoder_out

    def max_positions(self):
        """Maximum input length supported by the encoder."""
        return None

    def upgrade_state_dict_named(self, state_dict, name):
        return state_dict