File size: 7,248 Bytes
62e9ca6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
# ----------------------------------------------------------------------------
# SpeechLM: Enhanced Speech Pre-Training with Unpaired Textual Data (https://arxiv.org/abs/2209.15329)
# Github source: https://github.com/microsoft/SpeechT5/tree/main/SpeechLM
# Code based on fairseq: https://github.com/facebookresearch/fairseq/tree/272c4c5197250997148fb12c0db6306035f166a4
# 
# Copyright (c) 2022 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# ----------------------------------------------------------------------------

from typing import List, Dict, Any
from dataclasses import dataclass, field

import torch
import torch.nn.functional as F

from fairseq import metrics, utils
from fairseq.criterions import FairseqCriterion, register_criterion
from fairseq.dataclass import FairseqDataclass
from fairseq.data.data_utils import lengths_to_mask
from fairseq.models.fairseq_model import FairseqEncoderModel

def label_smoothed_nll_loss(lprobs, target, epsilon, ignore_index=None, reduce=True):
    if target.dim() == lprobs.dim() - 1:
        target = target.unsqueeze(-1)
    nll_loss = -lprobs.gather(dim=-1, index=target)
    smooth_loss = -lprobs.sum(dim=-1, keepdim=True)
    if ignore_index is not None:
        pad_mask = target.eq(ignore_index)
        nll_loss.masked_fill_(pad_mask, 0.0)
        smooth_loss.masked_fill_(pad_mask, 0.0)
    else:
        nll_loss = nll_loss.squeeze(-1)
        smooth_loss = smooth_loss.squeeze(-1)
    if reduce:
        ntokens = (~pad_mask).sum()
        nll_loss = nll_loss.sum() / ntokens
        smooth_loss = smooth_loss.sum() / ntokens
    eps_i = epsilon / (lprobs.size(-1) - 1)
    loss = (1.0 - epsilon - eps_i) * nll_loss + eps_i * smooth_loss
    return loss, nll_loss

@dataclass
class FastText2UnitCriterionConfig(FairseqDataclass):
    label_smoothing: float = field(
        default=0.0,
        metadata={"help": "epsilon for label smoothing, 0 means no label smoothing"},
    )
    dur_loss_weight: float = field(
        default=1.0,
        metadata={"help": "scale of duration loss"},
    )
    report_accuracy: bool = field(
        default=True,
        metadata={"help": "report decoder accuracy metric"},
    )

@register_criterion("fasttext2unit_criterion", dataclass=FastText2UnitCriterionConfig)
class FastText2UnitLoss(FairseqCriterion):
    def __init__(self,
        task,
        label_smoothing=0,
        dur_loss_weight=1.0,
        report_accuracy=False,
    ):
        super().__init__(task)
        self.eps = label_smoothing
        self.dur_loss_weight = dur_loss_weight
        self.pad_idx = task.tgt_dict.pad()
        self.report_accuracy = report_accuracy

    def forward(self, model: FairseqEncoderModel, sample, reduction="mean"):
        src_tokens = sample["net_input"]["src_tokens"]
        src_lens = sample["net_input"]["src_lengths"]
        tgt_lens = sample["target_lengths"]
        
        _feat_out, _feat_out_post, out_lens, log_dur_out, pitch_out, energy_out = model(
            src_tokens=src_tokens,
            src_lengths=src_lens,
            prev_output_tokens=sample["net_input"]["prev_output_tokens"],
            incremental_state=None,
            target_lengths=tgt_lens,
            speaker=sample["speaker"],
            durations=sample["durations"],
            pitches=sample["pitches"],
            energies=sample["energies"],
        )

        src_mask = lengths_to_mask(sample["net_input"]["src_lengths"])
        tgt_mask = lengths_to_mask(sample["target_lengths"])

        lprobs = model.get_normalized_probs((_feat_out,), log_probs=True)
        target = sample["target"].long()
        ce_loss, nll_loss = label_smoothed_nll_loss(lprobs, target, self.eps, self.padding_idx, reduce=True)

        pitches, energies = sample["pitches"], sample["energies"]
        if pitches is not None:
            pitch_out, pitches = pitch_out[src_mask], pitches[src_mask]
            pitch_loss = F.mse_loss(pitch_out, pitches, reduction=reduction)
        else:
            pitch_loss = 0
        if energies is not None:
            energy_out, energies = energy_out[src_mask], energies[src_mask]
            energy_loss = F.mse_loss(energy_out, energies, reduction=reduction)
        else:
            energy_loss = 0

        log_dur_out = log_dur_out[src_mask]
        dur = sample["durations"].float()
        dur = dur.half() if log_dur_out.type().endswith(".HalfTensor") else dur
        log_dur = torch.log(dur + 1)[src_mask]
        dur_loss = F.mse_loss(log_dur_out, log_dur, reduction=reduction)
        dur_loss = self.dur_loss_weight * dur_loss

        loss = ce_loss + dur_loss + pitch_loss + energy_loss

        sample_size = sample["nsentences"]
        logging_output = {
            "loss": utils.item(loss.data),
            "ntokens": sample["ntokens"],
            "nsentences": sample["nsentences"],
            "sample_size": sample_size,
            "ce_loss": utils.item(ce_loss.data),
            "dur_loss": utils.item(dur_loss.data),
            "pitch_loss": utils.item(pitch_loss),
            "energy_loss": utils.item(energy_loss),
        }
        if self.report_accuracy:
            n_correct = lprobs.argmax(-1).masked_select(tgt_mask).eq(target.masked_select(tgt_mask)).sum()
            logging_output["n_correct"] = utils.item(n_correct.data)
            logging_output["total"] = tgt_mask.sum()
        return loss, 1, logging_output

    @classmethod
    def reduce_metrics(cls, logging_outputs: List[Dict[str, Any]]) -> None:
        ns = [log.get("sample_size", 0) for log in logging_outputs]
        ntot = sum(ns)
        ws = [n / (ntot + 1e-8) for n in ns]
        for key in [
            "loss",
            "ce_loss",
            "dur_loss",
            "pitch_loss",
            "energy_loss",
        ]:
            vals = [log.get(key, 0) for log in logging_outputs]
            val = sum(val * w for val, w in zip(vals, ws))
            metrics.log_scalar(key, val, ntot, round=3)
        metrics.log_scalar("sample_size", ntot, len(logging_outputs))

        total = utils.item(sum(log.get("total", 0) for log in logging_outputs))
        if total > 0:
            metrics.log_scalar("total", total)
            n_correct = utils.item(
                    sum(log.get("n_correct", 0) for log in logging_outputs)
                )
            metrics.log_scalar("n_correct", n_correct)
            metrics.log_derived(
                "accuracy",
                lambda meters: round(
                    meters["n_correct"].sum * 100.0 / meters["total"].sum, 3
                )
                if meters["total"].sum > 0
                else float("nan"),
            )

        # inference metrics
        if "targ_frames" not in logging_outputs[0]:
            return
        n = sum(log.get("targ_frames", 0) for log in logging_outputs)
        for key, new_key in [
            ("mcd_loss", "mcd_loss"),
            ("pred_frames", "pred_ratio"),
            ("nins", "ins_rate"),
            ("ndel", "del_rate"),
        ]:
            val = sum(log.get(key, 0) for log in logging_outputs)
            metrics.log_scalar(new_key, val / n, n, round=3)

    @staticmethod
    def logging_outputs_can_be_summed() -> bool:
        return False