Spaces:
Runtime error
Runtime error
File size: 9,903 Bytes
62e9ca6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 |
# ----------------------------------------------------------------------------
# SpeechLM: Enhanced Speech Pre-Training with Unpaired Textual Data (https://arxiv.org/abs/2209.15329)
# Github source: https://github.com/microsoft/SpeechT5/tree/main/SpeechLM
# Code based on fairseq: https://github.com/facebookresearch/fairseq/tree/272c4c5197250997148fb12c0db6306035f166a4
#
# Copyright (c) 2022 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# ----------------------------------------------------------------------------
import logging
import torch
from fairseq import utils
from fairseq.models import (
FairseqEncoderModel,
register_model,
register_model_architecture,
)
from fairseq.models.text_to_speech import fastspeech2
logger = logging.getLogger(__name__)
class VarianceAdaptor(fastspeech2.VarianceAdaptor):
def __init__(self, args):
super().__init__(args)
self.use_pitch = args.use_pitch
self.use_energe = args.use_energe
def forward(
self,
x,
padding_mask,
durations=None,
pitches=None,
energies=None,
d_factor=1.0,
p_factor=1.0,
e_factor=1.0,
):
# x: B x T x C
log_dur_out = self.duration_predictor(x)
dur_out = torch.clamp(
torch.round((torch.exp(log_dur_out) - 1) * d_factor).long(), min=0
)
dur_out.masked_fill_(padding_mask, 0)
if self.use_pitch:
pitch_out, pitch_emb = self.get_pitch_emb(x, pitches, p_factor)
x = x + pitch_emb
else:
pitch_out = None
if self.use_energe:
energy_out, energy_emb = self.get_energy_emb(x, energies, e_factor)
x = x + energy_emb
else:
energy_out = None
x, out_lens = self.length_regulator(
x, dur_out if durations is None else durations
)
return x, out_lens, log_dur_out, pitch_out, energy_out
class FastSpeech2Encoder(fastspeech2.FastSpeech2Encoder):
def __init__(self, args, src_dict, embed_speaker):
super().__init__(args, src_dict, embed_speaker)
self.var_adaptor = VarianceAdaptor(args)
self.apply(fastspeech2.model_init)
@register_model("fasttext2unit")
class FastText2UnitModel(FairseqEncoderModel):
"""
Implementation for https://arxiv.org/abs/2006.04558
"""
NON_AUTOREGRESSIVE = True
@staticmethod
def add_args(parser):
parser.add_argument("--dropout", type=float)
parser.add_argument("--output-frame-dim", type=int)
parser.add_argument("--speaker-embed-dim", type=int)
# FFT blocks
parser.add_argument("--fft-hidden-dim", type=int)
parser.add_argument("--fft-kernel-size", type=int)
parser.add_argument("--attention-dropout", type=float)
parser.add_argument("--encoder-layers", type=int)
parser.add_argument("--encoder-embed-dim", type=int)
parser.add_argument("--encoder-attention-heads", type=int)
parser.add_argument("--decoder-layers", type=int)
parser.add_argument("--decoder-embed-dim", type=int)
parser.add_argument("--decoder-attention-heads", type=int)
# variance predictor
parser.add_argument("--var-pred-n-bins", type=int)
parser.add_argument("--var-pred-hidden-dim", type=int)
parser.add_argument("--var-pred-kernel-size", type=int)
parser.add_argument("--var-pred-dropout", type=float)
# postnet
parser.add_argument("--add-postnet", action="store_true")
parser.add_argument("--postnet-dropout", type=float)
parser.add_argument("--postnet-layers", type=int)
parser.add_argument("--postnet-conv-dim", type=int)
parser.add_argument("--postnet-conv-kernel-size", type=int)
# pitch & energe
parser.add_argument("--use-pitch", action="store_true")
parser.add_argument("--use-energe", action="store_true")
def __init__(self, encoder, args, src_dict):
super().__init__(encoder)
self._num_updates = 0
@classmethod
def build_model(cls, args, task):
embed_speaker = task.get_speaker_embeddings(args)
if args.output_frame_dim == -1:
args.output_frame_dim = len(task.tgt_dict)
encoder = FastSpeech2Encoder(args, task.src_dict, embed_speaker)
return cls(encoder, args, task.src_dict)
def set_num_updates(self, num_updates):
super().set_num_updates(num_updates)
self._num_updates = num_updates
def get_normalized_probs(self, net_output, log_probs, sample=None):
logits = net_output[0]
if log_probs:
return utils.log_softmax(logits.float(), dim=-1)
else:
return utils.softmax(logits.float(), dim=-1)
@register_model_architecture("fasttext2unit", "fasttext2unit_s")
def base_architecture(args):
args.dropout = getattr(args, "dropout", 0.2)
args.output_frame_dim = getattr(args, "output_frame_dim", -1)
args.speaker_embed_dim = getattr(args, "speaker_embed_dim", 256)
# FFT blocks
args.fft_hidden_dim = getattr(args, "fft_hidden_dim", 1024)
args.fft_kernel_size = getattr(args, "fft_kernel_size", 9)
args.attention_dropout = getattr(args, "attention_dropout", 0.0)
args.encoder_layers = getattr(args, "encoder_layers", 4)
args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 256)
args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 2)
args.decoder_layers = getattr(args, "decoder_layers", 4)
args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 256)
args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 2)
# variance predictor
args.var_pred_n_bins = getattr(args, "var_pred_n_bins", 256)
args.var_pred_hidden_dim = getattr(args, "var_pred_hidden_dim", 256)
args.var_pred_kernel_size = getattr(args, "var_pred_kernel_size", 3)
args.var_pred_dropout = getattr(args, "var_pred_dropout", 0.5)
# postnet
args.add_postnet = getattr(args, "add_postnet", False)
args.postnet_dropout = getattr(args, "postnet_dropout", 0.5)
args.postnet_layers = getattr(args, "postnet_layers", 5)
args.postnet_conv_dim = getattr(args, "postnet_conv_dim", 512)
args.postnet_conv_kernel_size = getattr(args, "postnet_conv_kernel_size", 5)
# pitch & energe
args.use_pitch = getattr(args, "use_pitch", False)
args.use_energe = getattr(args, "use_energe", False)
@register_model_architecture("fasttext2unit", "fasttext2unit_m")
def base_architecture(args):
args.dropout = getattr(args, "dropout", 0.2)
args.output_frame_dim = getattr(args, "output_frame_dim", -1)
args.speaker_embed_dim = getattr(args, "speaker_embed_dim", 256)
# FFT blocks
args.fft_hidden_dim = getattr(args, "fft_hidden_dim", 1024)
args.fft_kernel_size = getattr(args, "fft_kernel_size", 9)
args.attention_dropout = getattr(args, "attention_dropout", 0.0)
args.encoder_layers = getattr(args, "encoder_layers", 6)
args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 256)
args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 2)
args.decoder_layers = getattr(args, "decoder_layers", 6)
args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 256)
args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 2)
# variance predictor
args.var_pred_n_bins = getattr(args, "var_pred_n_bins", 256)
args.var_pred_hidden_dim = getattr(args, "var_pred_hidden_dim", 256)
args.var_pred_kernel_size = getattr(args, "var_pred_kernel_size", 3)
args.var_pred_dropout = getattr(args, "var_pred_dropout", 0.5)
# postnet
args.add_postnet = getattr(args, "add_postnet", False)
args.postnet_dropout = getattr(args, "postnet_dropout", 0.5)
args.postnet_layers = getattr(args, "postnet_layers", 5)
args.postnet_conv_dim = getattr(args, "postnet_conv_dim", 512)
args.postnet_conv_kernel_size = getattr(args, "postnet_conv_kernel_size", 5)
# pitch & energe
args.use_pitch = getattr(args, "use_pitch", False)
args.use_energe = getattr(args, "use_energe", False)
@register_model_architecture("fasttext2unit", "fasttext2unit_l")
def base_architecture(args):
args.dropout = getattr(args, "dropout", 0.2)
args.output_frame_dim = getattr(args, "output_frame_dim", -1)
args.speaker_embed_dim = getattr(args, "speaker_embed_dim", 256)
# FFT blocks
args.fft_hidden_dim = getattr(args, "fft_hidden_dim", 1536)
args.fft_kernel_size = getattr(args, "fft_kernel_size", 9)
args.attention_dropout = getattr(args, "attention_dropout", 0.1)
args.encoder_layers = getattr(args, "encoder_layers", 6)
args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 384)
args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 6)
args.decoder_layers = getattr(args, "decoder_layers", 6)
args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 384)
args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 6)
# variance predictor
args.var_pred_n_bins = getattr(args, "var_pred_n_bins", 256)
args.var_pred_hidden_dim = getattr(args, "var_pred_hidden_dim", 256)
args.var_pred_kernel_size = getattr(args, "var_pred_kernel_size", 3)
args.var_pred_dropout = getattr(args, "var_pred_dropout", 0.5)
# postnet
args.add_postnet = getattr(args, "add_postnet", False)
args.postnet_dropout = getattr(args, "postnet_dropout", 0.5)
args.postnet_layers = getattr(args, "postnet_layers", 5)
args.postnet_conv_dim = getattr(args, "postnet_conv_dim", 512)
args.postnet_conv_kernel_size = getattr(args, "postnet_conv_kernel_size", 5)
# pitch & energe
args.use_pitch = getattr(args, "use_pitch", False)
args.use_energe = getattr(args, "use_energe", False)
|