File size: 9,903 Bytes
62e9ca6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
# ----------------------------------------------------------------------------
# SpeechLM: Enhanced Speech Pre-Training with Unpaired Textual Data (https://arxiv.org/abs/2209.15329)
# Github source: https://github.com/microsoft/SpeechT5/tree/main/SpeechLM
# Code based on fairseq: https://github.com/facebookresearch/fairseq/tree/272c4c5197250997148fb12c0db6306035f166a4
# 
# Copyright (c) 2022 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# ----------------------------------------------------------------------------

import logging
import torch

from fairseq import utils
from fairseq.models import (
    FairseqEncoderModel,
    register_model,
    register_model_architecture,
)
from fairseq.models.text_to_speech import fastspeech2

logger = logging.getLogger(__name__)

class VarianceAdaptor(fastspeech2.VarianceAdaptor):
    def __init__(self, args):
        super().__init__(args)
        self.use_pitch = args.use_pitch
        self.use_energe = args.use_energe
    
    def forward(
        self,
        x,
        padding_mask,
        durations=None,
        pitches=None,
        energies=None,
        d_factor=1.0,
        p_factor=1.0,
        e_factor=1.0,
    ):
        # x: B x T x C
        log_dur_out = self.duration_predictor(x)
        dur_out = torch.clamp(
            torch.round((torch.exp(log_dur_out) - 1) * d_factor).long(), min=0
        )
        dur_out.masked_fill_(padding_mask, 0)

        if self.use_pitch:
            pitch_out, pitch_emb = self.get_pitch_emb(x, pitches, p_factor)
            x = x + pitch_emb
        else:
            pitch_out = None

        if self.use_energe:
            energy_out, energy_emb = self.get_energy_emb(x, energies, e_factor)
            x = x + energy_emb
        else:
            energy_out = None

        x, out_lens = self.length_regulator(
            x, dur_out if durations is None else durations
        )

        return x, out_lens, log_dur_out, pitch_out, energy_out


class FastSpeech2Encoder(fastspeech2.FastSpeech2Encoder):
    def __init__(self, args, src_dict, embed_speaker):
        super().__init__(args, src_dict, embed_speaker)
        self.var_adaptor = VarianceAdaptor(args)
        self.apply(fastspeech2.model_init)

@register_model("fasttext2unit")
class FastText2UnitModel(FairseqEncoderModel):
    """
    Implementation for https://arxiv.org/abs/2006.04558
    """

    NON_AUTOREGRESSIVE = True


    @staticmethod
    def add_args(parser):
        parser.add_argument("--dropout", type=float)
        parser.add_argument("--output-frame-dim", type=int)
        parser.add_argument("--speaker-embed-dim", type=int)
        # FFT blocks
        parser.add_argument("--fft-hidden-dim", type=int)
        parser.add_argument("--fft-kernel-size", type=int)
        parser.add_argument("--attention-dropout", type=float)
        parser.add_argument("--encoder-layers", type=int)
        parser.add_argument("--encoder-embed-dim", type=int)
        parser.add_argument("--encoder-attention-heads", type=int)
        parser.add_argument("--decoder-layers", type=int)
        parser.add_argument("--decoder-embed-dim", type=int)
        parser.add_argument("--decoder-attention-heads", type=int)
        # variance predictor
        parser.add_argument("--var-pred-n-bins", type=int)
        parser.add_argument("--var-pred-hidden-dim", type=int)
        parser.add_argument("--var-pred-kernel-size", type=int)
        parser.add_argument("--var-pred-dropout", type=float)
        # postnet
        parser.add_argument("--add-postnet", action="store_true")
        parser.add_argument("--postnet-dropout", type=float)
        parser.add_argument("--postnet-layers", type=int)
        parser.add_argument("--postnet-conv-dim", type=int)
        parser.add_argument("--postnet-conv-kernel-size", type=int)
        # pitch & energe
        parser.add_argument("--use-pitch", action="store_true")
        parser.add_argument("--use-energe", action="store_true")


    def __init__(self, encoder, args, src_dict):
        super().__init__(encoder)
        self._num_updates = 0

    @classmethod
    def build_model(cls, args, task):
        embed_speaker = task.get_speaker_embeddings(args)
        if args.output_frame_dim == -1:
            args.output_frame_dim = len(task.tgt_dict)
        encoder = FastSpeech2Encoder(args, task.src_dict, embed_speaker)
        return cls(encoder, args, task.src_dict)

    def set_num_updates(self, num_updates):
        super().set_num_updates(num_updates)
        self._num_updates = num_updates

    def get_normalized_probs(self, net_output, log_probs, sample=None):
        logits = net_output[0]
        if log_probs:
            return utils.log_softmax(logits.float(), dim=-1)
        else:
            return utils.softmax(logits.float(), dim=-1)


@register_model_architecture("fasttext2unit", "fasttext2unit_s")
def base_architecture(args):
    args.dropout = getattr(args, "dropout", 0.2)
    args.output_frame_dim = getattr(args, "output_frame_dim", -1)
    args.speaker_embed_dim = getattr(args, "speaker_embed_dim", 256)
    # FFT blocks
    args.fft_hidden_dim = getattr(args, "fft_hidden_dim", 1024)
    args.fft_kernel_size = getattr(args, "fft_kernel_size", 9)
    args.attention_dropout = getattr(args, "attention_dropout", 0.0)
    args.encoder_layers = getattr(args, "encoder_layers", 4)
    args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 256)
    args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 2)
    args.decoder_layers = getattr(args, "decoder_layers", 4)
    args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 256)
    args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 2)
    # variance predictor
    args.var_pred_n_bins = getattr(args, "var_pred_n_bins", 256)
    args.var_pred_hidden_dim = getattr(args, "var_pred_hidden_dim", 256)
    args.var_pred_kernel_size = getattr(args, "var_pred_kernel_size", 3)
    args.var_pred_dropout = getattr(args, "var_pred_dropout", 0.5)
    # postnet
    args.add_postnet = getattr(args, "add_postnet", False)
    args.postnet_dropout = getattr(args, "postnet_dropout", 0.5)
    args.postnet_layers = getattr(args, "postnet_layers", 5)
    args.postnet_conv_dim = getattr(args, "postnet_conv_dim", 512)
    args.postnet_conv_kernel_size = getattr(args, "postnet_conv_kernel_size", 5)
    # pitch & energe
    args.use_pitch = getattr(args, "use_pitch", False)
    args.use_energe = getattr(args, "use_energe", False)


@register_model_architecture("fasttext2unit", "fasttext2unit_m")
def base_architecture(args):
    args.dropout = getattr(args, "dropout", 0.2)
    args.output_frame_dim = getattr(args, "output_frame_dim", -1)
    args.speaker_embed_dim = getattr(args, "speaker_embed_dim", 256)
    # FFT blocks
    args.fft_hidden_dim = getattr(args, "fft_hidden_dim", 1024)
    args.fft_kernel_size = getattr(args, "fft_kernel_size", 9)
    args.attention_dropout = getattr(args, "attention_dropout", 0.0)
    args.encoder_layers = getattr(args, "encoder_layers", 6)
    args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 256)
    args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 2)
    args.decoder_layers = getattr(args, "decoder_layers", 6)
    args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 256)
    args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 2)
    # variance predictor
    args.var_pred_n_bins = getattr(args, "var_pred_n_bins", 256)
    args.var_pred_hidden_dim = getattr(args, "var_pred_hidden_dim", 256)
    args.var_pred_kernel_size = getattr(args, "var_pred_kernel_size", 3)
    args.var_pred_dropout = getattr(args, "var_pred_dropout", 0.5)
    # postnet
    args.add_postnet = getattr(args, "add_postnet", False)
    args.postnet_dropout = getattr(args, "postnet_dropout", 0.5)
    args.postnet_layers = getattr(args, "postnet_layers", 5)
    args.postnet_conv_dim = getattr(args, "postnet_conv_dim", 512)
    args.postnet_conv_kernel_size = getattr(args, "postnet_conv_kernel_size", 5)
    # pitch & energe
    args.use_pitch = getattr(args, "use_pitch", False)
    args.use_energe = getattr(args, "use_energe", False)


@register_model_architecture("fasttext2unit", "fasttext2unit_l")
def base_architecture(args):
    args.dropout = getattr(args, "dropout", 0.2)
    args.output_frame_dim = getattr(args, "output_frame_dim", -1)
    args.speaker_embed_dim = getattr(args, "speaker_embed_dim", 256)
    # FFT blocks
    args.fft_hidden_dim = getattr(args, "fft_hidden_dim", 1536)
    args.fft_kernel_size = getattr(args, "fft_kernel_size", 9)
    args.attention_dropout = getattr(args, "attention_dropout", 0.1)
    args.encoder_layers = getattr(args, "encoder_layers", 6)
    args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 384)
    args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 6)
    args.decoder_layers = getattr(args, "decoder_layers", 6)
    args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 384)
    args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 6)
    # variance predictor
    args.var_pred_n_bins = getattr(args, "var_pred_n_bins", 256)
    args.var_pred_hidden_dim = getattr(args, "var_pred_hidden_dim", 256)
    args.var_pred_kernel_size = getattr(args, "var_pred_kernel_size", 3)
    args.var_pred_dropout = getattr(args, "var_pred_dropout", 0.5)
    # postnet
    args.add_postnet = getattr(args, "add_postnet", False)
    args.postnet_dropout = getattr(args, "postnet_dropout", 0.5)
    args.postnet_layers = getattr(args, "postnet_layers", 5)
    args.postnet_conv_dim = getattr(args, "postnet_conv_dim", 512)
    args.postnet_conv_kernel_size = getattr(args, "postnet_conv_kernel_size", 5)
    # pitch & energe
    args.use_pitch = getattr(args, "use_pitch", False)
    args.use_energe = getattr(args, "use_energe", False)