Spaces:
Runtime error
Runtime error
File size: 10,635 Bytes
62e9ca6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 |
# ----------------------------------------------------------------------------
# SpeechLM: Enhanced Speech Pre-Training with Unpaired Textual Data (https://arxiv.org/abs/2209.15329)
# Github source: https://github.com/microsoft/SpeechT5/tree/main/SpeechLM
# Code based on fairseq: https://github.com/facebookresearch/fairseq/tree/272c4c5197250997148fb12c0db6306035f166a4
#
# Copyright (c) 2022 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# ----------------------------------------------------------------------------
import contextlib
import torch
import torch.nn as nn
from argparse import Namespace
from dataclasses import dataclass, field
from typing import Any
from fairseq import checkpoint_utils, tasks, utils
from fairseq.models import FairseqEncoderDecoderModel, register_model
from fairseq.models.fairseq_decoder import FairseqDecoder
from fairseq.models.fairseq_encoder import FairseqEncoder
from fairseq.tasks import FairseqTask
from fairseq.dataclass import ChoiceEnum
from fairseq.dataclass.utils import convert_namespace_to_omegaconf
from fairseq.data.data_utils import lengths_to_padding_mask
from fairseq.models.hubert import HubertAsrConfig
from speechlm.modules.transformer_decoder import TransformerDecoderScriptable
@dataclass
class SpeechLMS2TConfig(HubertAsrConfig):
activation_fn: ChoiceEnum(utils.get_available_activation_fns()) = field(
default="gelu", metadata={"help": "activation function to use"}
)
use_rel_pos_enc: bool = field(
default=True,
metadata={"help": "whether to use relative positional encoding for decoder"},
)
encoder_embed_dim: int = field(
default=768, metadata={"help": "encoder embedding dimension, used for enc-dec att"}
)
decoder_embed_dim: int = field(
default=768, metadata={"help": "decoder embedding dimension"}
)
decoder_output_dim: int = field(
default=768, metadata={"help": "decoder output dimension"}
)
decoder_ffn_embed_dim: int = field(
default=3072, metadata={"help": "decoder embedding dimension for FFN"}
)
decoder_layers: int = field(default=6, metadata={"help": "num of decoder layers"})
decoder_layerdrop: float = field(
default=0.0, metadata={"help": "decoder layerdrop chance"}
)
decoder_attention_heads: int = field(
default=12, metadata={"help": "num decoder attention heads"}
)
decoder_learned_pos: bool = field(
default=False,
metadata={"help": "use learned positional embeddings in the decoder"},
)
decoder_normalize_before: bool = field(
default=False, metadata={"help": "apply layernorm before each decoder block"}
)
no_token_positional_embeddings: bool = field(
default=False,
metadata={
"help": "if set, disables positional embeddings (outside self attention)"
},
)
decoder_dropout: float = field(
default=0.0, metadata={"help": "dropout probability in the decoder"}
)
decoder_attention_dropout: float = field(
default=0.0,
metadata={
"help": "dropout probability for attention weights inside the decoder"
},
)
decoder_activation_dropout: float = field(
default=0.0,
metadata={
"help": "dropout probability after activation in FFN inside the decoder"
},
)
share_decoder_input_output_embed: bool = field(
default=False, metadata={"help": "share decoder input and output embeddings"}
)
### the following config is only for the compatibility to fairseq speech_to_text task
input_feat_per_channel: Any = None
input_channels: Any = None
speaker_to_id: Any = None
@register_model("speechlm_st_legacy", dataclass=SpeechLMS2TConfig)
class SpeechLMS2T(FairseqEncoderDecoderModel):
def __init__(self, cfg: SpeechLMS2TConfig, encoder: FairseqEncoder, decoder: FairseqDecoder):
super().__init__(encoder, decoder)
self.cfg = cfg
def upgrade_state_dict_named(self, state_dict, name):
super().upgrade_state_dict_named(state_dict, name)
return state_dict
@classmethod
def build_model(cls, cfg: SpeechLMS2TConfig, task: FairseqTask):
"""Build a new model instance."""
def build_embedding(dictionary, embed_dim):
num_embeddings = len(dictionary)
padding_idx = dictionary.pad()
return Embedding(num_embeddings, embed_dim, padding_idx)
src_dict, tgt_dict = task.source_dictionary, task.target_dictionary
encoder = SpeechLMEncoder(cfg, task)
assert cfg.encoder_embed_dim == encoder.w2v_model.encoder.embedding_dim
decoder_embed_tokens = build_embedding(tgt_dict, cfg.decoder_embed_dim)
decoder = TransformerDecoderScriptable(cfg, tgt_dict, decoder_embed_tokens)
return cls(cfg, encoder, decoder)
class SpeechLMEncoder(FairseqEncoder):
"""
Modified from fairseq.models.hubert.hubert_asr.HubertEncoder
1. make it compatible with fairseq speech_to_text task
2. make it compatible with encoder-decoder model
"""
def __init__(self, cfg: HubertAsrConfig, task):
self.apply_mask = cfg.apply_mask
arg_overrides = {
"dropout": cfg.dropout,
"activation_dropout": cfg.activation_dropout,
"dropout_input": cfg.dropout_input,
"attention_dropout": cfg.attention_dropout,
"mask_length": cfg.mask_length,
"mask_prob": cfg.mask_prob,
"mask_selection": cfg.mask_selection,
"mask_other": cfg.mask_other,
"no_mask_overlap": cfg.no_mask_overlap,
"mask_channel_length": cfg.mask_channel_length,
"mask_channel_prob": cfg.mask_channel_prob,
"mask_channel_selection": cfg.mask_channel_selection,
"mask_channel_other": cfg.mask_channel_other,
"no_mask_channel_overlap": cfg.no_mask_channel_overlap,
"encoder_layerdrop": cfg.layerdrop,
"feature_grad_mult": cfg.feature_grad_mult,
}
if cfg.w2v_args is None:
state = checkpoint_utils.load_checkpoint_to_cpu(cfg.w2v_path, arg_overrides)
w2v_args = state.get("cfg", None)
if w2v_args is None:
w2v_args = convert_namespace_to_omegaconf(state["args"])
cfg.w2v_args = w2v_args
else:
state = None
w2v_args = cfg.w2v_args
if isinstance(w2v_args, Namespace):
cfg.w2v_args = w2v_args = convert_namespace_to_omegaconf(w2v_args)
assert task.data_cfg.standardize_audio() == w2v_args.task.normalize, (
"Fine-tuning works best when data normalization is the same. "
"Please check that --normalize is set or unset for "
"both pre-training and here"
)
w2v_args.task.data = cfg.data
pretrain_task = tasks.setup_task(w2v_args.task)
if state is not None and "task_state" in state:
# This will load the stored "dictionaries" object
pretrain_task.load_state_dict(state["task_state"])
else:
pretrain_task.load_state_dict(task.state_dict())
model = pretrain_task.build_model(w2v_args.model, from_checkpoint=True)
if state is not None and not cfg.no_pretrained_weights:
# set strict=False because we omit some modules
model.load_state_dict(state["model"], strict=False)
model.remove_pretraining_modules()
super().__init__(pretrain_task.source_dictionary)
d = w2v_args.model.encoder_embed_dim
self.w2v_model = model
self.final_dropout = nn.Dropout(cfg.final_dropout)
self.freeze_finetune_updates = cfg.freeze_finetune_updates
self.num_updates = 0
def set_num_updates(self, num_updates):
"""Set the number of parameters updates."""
super().set_num_updates(num_updates)
self.num_updates = num_updates
def forward(self, src_tokens=None, src_lengths=None, **kwargs):
w2v_args = {
"source": src_tokens,
"padding_mask": lengths_to_padding_mask(src_lengths),
"mask": self.apply_mask and self.training,
}
ft = self.freeze_finetune_updates <= self.num_updates
with torch.no_grad() if not ft else contextlib.ExitStack():
x, padding_mask = self.w2v_model.extract_features(**w2v_args)
# B x T x C -> T x B x C
x = x.transpose(0, 1)
x = self.final_dropout(x)
return {
"encoder_out": [x], # T x B x C
"encoder_padding_mask": [padding_mask], # B x T
"padding_mask": [padding_mask],
}
def forward_torchscript(self, net_input):
"""A TorchScript-compatible version of forward.
Encoders which use additional arguments may want to override
this method for TorchScript compatibility.
"""
_net_input = {
"source": net_input["src_tokens"],
"padding_mask": lengths_to_padding_mask(net_input["src_lengths"]),
"mask": False,
}
x, padding_mask = self.w2v_model.extract_features(**_net_input)
# B x T x C -> T x B x C
x = x.transpose(0, 1)
encoder_out = {
"encoder_out" : [x],
"encoder_padding_mask" : [padding_mask],
}
return encoder_out
def reorder_encoder_out(self, encoder_out, new_order):
if encoder_out["encoder_out"] is not None:
encoder_out["encoder_out"] = [
x.index_select(1, new_order) for x in encoder_out["encoder_out"]
]
if encoder_out["encoder_padding_mask"] is not None:
encoder_out["encoder_padding_mask"] = [
x.index_select(0, new_order) for x in encoder_out["encoder_padding_mask"]
]
return encoder_out
def max_positions(self):
"""Maximum input length supported by the encoder."""
return None
def upgrade_state_dict_named(self, state_dict, name):
return state_dict
def Embedding(num_embeddings, embedding_dim, padding_idx):
m = nn.Embedding(num_embeddings, embedding_dim, padding_idx=padding_idx)
nn.init.normal_(m.weight, mean=0, std=embedding_dim**-0.5)
nn.init.constant_(m.weight[padding_idx], 0)
return m
def Linear(in_features, out_features, bias=True):
m = nn.Linear(in_features, out_features, bias)
nn.init.xavier_uniform_(m.weight)
if bias:
nn.init.constant_(m.bias, 0.0)
return m
|