File size: 7,313 Bytes
62e9ca6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
# ----------------------------------------------------------------------------
# SpeechLM: Enhanced Speech Pre-Training with Unpaired Textual Data (https://arxiv.org/abs/2209.15329)
# Github source: https://github.com/microsoft/SpeechT5/tree/main/SpeechLM
# Code based on fairseq: https://github.com/facebookresearch/fairseq/tree/272c4c5197250997148fb12c0db6306035f166a4
# 
# Copyright (c) 2022 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# ----------------------------------------------------------------------------

import torch
import numpy as np
import logging
from pathlib import Path
from argparse import Namespace

from fairseq.tasks import LegacyFairseqTask, register_task
from fairseq.data import Dictionary, encoders
from fairseq.data.audio.speech_to_text_joint_dataset import S2TJointDataConfig

from speechlm.unit_generator import NonAutoregressiveUnitGenerator
from speechlm.data.text_to_unit_dataset import Text2UnitDatasetCreator

logging.basicConfig(
    format="%(asctime)s | %(levelname)s | %(name)s | %(message)s",
    datefmt="%Y-%m-%d %H:%M:%S",
    level=logging.INFO,
)
logger = logging.getLogger(__name__)


@register_task("fast_text_to_unit")
class FastTextToUnitTask(LegacyFairseqTask):
    @staticmethod
    def add_args(parser):
        parser.add_argument("data", help="manifest root path")
        parser.add_argument(
            "--config-yaml",
            type=str,
            default="config.yaml",
            help="Configuration YAML filename (under manifest root)",
        )
        parser.add_argument(
            "--max-source-positions",
            default=2048,
            type=int,
            metavar="N",
            help="max number of tokens in the source sequence",
        )
        parser.add_argument(
            "--max-target-positions",
            default=1024,
            type=int,
            metavar="N",
            help="max number of tokens in the target sequence",
        )
        parser.add_argument("--n-frames-per-step", type=int, default=1)
        parser.add_argument("--eos-prob-threshold", type=float, default=0.5)
        parser.add_argument("--eval-inference", action="store_true")
        parser.add_argument("--eval-tb-nsample", type=int, default=8)
        parser.add_argument("--vocoder", type=str, default="griffin_lim")
        parser.add_argument("--spec-bwd-max-iter", type=int, default=8)

    def __init__(self, args, src_dict, tgt_dict):
        super().__init__(args)
        self.src_dict = src_dict
        self.tgt_dict = tgt_dict
        self.data_cfg = S2TJointDataConfig(Path(args.data) / args.config_yaml)
        self.speaker_to_id = self._get_speaker_to_id()
        
    @classmethod
    def setup_task(cls, args, **kwargs):
        data_cfg = S2TJointDataConfig(Path(args.data) / args.config_yaml)
        src_dict_path = Path(args.data) / data_cfg.src_vocab_filename
        if not src_dict_path.is_file():
            raise FileNotFoundError(f"Dict not found: {src_dict_path.as_posix()}")
        src_dict = Dictionary.load(src_dict_path.as_posix())
        logger.info(
            f"Source dictionary size ({data_cfg.src_vocab_filename}): " f"{len(src_dict):,}"
        )
        tgt_dict_path = Path(args.data) / data_cfg.vocab_filename
        if not tgt_dict_path.is_file():
            raise FileNotFoundError(f"Dict not found: {tgt_dict_path.as_posix()}")
        tgt_dict = Dictionary.load(tgt_dict_path.as_posix())
        logger.info(
            f"Target dictionary size ({data_cfg.vocab_filename}): " f"{len(tgt_dict):,}"
        )

        if getattr(args, "train_subset", None) is not None:
            if not all(s.startswith("train") for s in args.train_subset.split(",")):
                raise ValueError('Train splits should be named like "train*".')
        return cls(args, src_dict, tgt_dict)
    
    def load_dataset(self, split, epoch=1, combine=False, **kwargs):
        is_train_split = split.startswith("train")
        pre_tokenizer = self.build_tokenizer(self.args)
        bpe_tokenizer = self.build_bpe(self.args)
        self.datasets[split] = Text2UnitDatasetCreator.from_tsv(
            self.args.data,
            self.data_cfg,
            split,
            self.src_dict,
            pre_tokenizer,
            bpe_tokenizer,
            is_train_split=is_train_split,
            epoch=epoch,
            seed=self.args.seed,
            n_frames_per_step=self.args.n_frames_per_step,
            speaker_to_id=self.speaker_to_id,
        )

    @property
    def target_dictionary(self):
        return self.tgt_dict

    @property
    def source_dictionary(self):
        return self.src_dict

    def max_positions(self):
        return self.args.max_source_positions, self.args.max_target_positions

    def _get_speaker_to_id(self):
        speaker_to_id = None
        speaker_set_filename = self.data_cfg.config.get("speaker_set_filename")
        if speaker_set_filename is not None:
            speaker_set_path = Path(self.args.data) / speaker_set_filename
            with open(speaker_set_path) as f:
                speaker_to_id = {r.strip(): i for i, r in enumerate(f)}
        return speaker_to_id

    @classmethod
    def get_speaker_embeddings(cls, args):
        # It Will be used in FastText2UnitModel model, insdead of nn.Embedding on speaker-id, we default to use x-vectors extracted ahead.
        # This is for varying the speaker information when generating units from text.
        if args.speaker_to_id is not None:
            embed_speaker = torch.nn.Embedding(
                len(args.speaker_to_id), args.speaker_embed_dim
            )
        elif args.speaker_embedding_type == "x-vector":
            # return LayerNorm(args.speaker_embed_dim)
            return lambda x: x.unsqueeze(1)
        elif args.speaker_embedding_type == "i-vector":
            # return LayerNorm(args.speaker_embed_dim)
            return lambda x: x
        else:
            embed_speaker = None
        return embed_speaker

    def build_model(self, cfg):
        cfg.pitch_min = self.data_cfg.config["features"].get("pitch_min", None)
        cfg.pitch_max = self.data_cfg.config["features"].get("pitch_max", None)
        cfg.energy_min = self.data_cfg.config["features"].get("energy_min", None)
        cfg.energy_max = self.data_cfg.config["features"].get("energy_max", None)
        cfg.speaker_to_id = self.speaker_to_id
        cfg.speaker_embedding_type = self.data_cfg.config.get("speaker_embedding_type", None)
        model = super().build_model(cfg)
        self.generator = None
        if getattr(cfg, "eval_inference", False):
            self.generator = self.build_generator([model], cfg)
        return model

    def build_generator(self, models, cfg, vocoder=None, **unused):
        model = models[0]
        assert getattr(model, "NON_AUTOREGRESSIVE") is True
        return NonAutoregressiveUnitGenerator(model, vocoder, self.data_cfg)


    def build_tokenizer(self, args):
        logger.info(f"pre-tokenizer: {self.data_cfg.pre_tokenizer}")
        return encoders.build_tokenizer(Namespace(**self.data_cfg.pre_tokenizer))

    def build_bpe(self, args):
        logger.info(f"tokenizer: {self.data_cfg.bpe_tokenizer}")
        return encoders.build_bpe(Namespace(**self.data_cfg.bpe_tokenizer))