File size: 6,148 Bytes
62e9ca6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
# ----------------------------------------------------------------------------
# SpeechUT: Bridging Speech and Text with Hidden-Unit for Encoder-Decoder Based Speech-Text Pre-training (https://arxiv.org/abs/2210.03730)
# Github source: https://github.com/microsoft/SpeechT5/tree/main/SpeechUT
# Code based on fairseq: https://github.com/facebookresearch/fairseq/tree/272c4c5197250997148fb12c0db6306035f166a4
# 
# Copyright (c) 2022 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# ----------------------------------------------------------------------------

import contextlib
import torch
from dataclasses import dataclass, field
from fairseq import utils
from fairseq.models import BaseFairseqModel, register_model
from fairseq.models.fairseq_encoder import FairseqEncoder
from fairseq.models.hubert import HubertAsrConfig, HubertEncoder
from fairseq.tasks import FairseqTask

@dataclass
class SpeechUTASRConfig(HubertAsrConfig):
    add_decoder: bool = field(
        default=True,
        metadata={"help": "add decoder for fine-tune"},
    )

@register_model("speechut_asr", dataclass=SpeechUTASRConfig)
class SpeechUTASR(BaseFairseqModel):
    """
    A encoder-ctc-decoder model if cfg.add_decoder is True, or a encoder-ctc model
    """
    def __init__(self, cfg: SpeechUTASRConfig, encoder: FairseqEncoder):
        super().__init__()
        self.cfg = cfg
        self.encoder = encoder
        if not cfg.add_decoder:
            self.encoder.w2v_model.decoder = None

    def upgrade_state_dict_named(self, state_dict, name):
        super().upgrade_state_dict_named(state_dict, name)
        return state_dict
    
    @classmethod
    def build_model(cls, cfg: SpeechUTASRConfig, task: FairseqTask):
        """Build a new model instance."""
        encoder = SpeechUTEncoder(cfg, task)
        return cls(cfg, encoder)

    def forward(self, source, padding_mask, prev_output_tokens, **kwargs):
        encoder_out = self.encoder(source, padding_mask, **kwargs)

        x = self.encoder.final_dropout(encoder_out['encoder_out'][0])  # (T, B, C)
        if self.encoder.proj:
            x = self.encoder.proj(x)
        if self.encoder.conv_ctc_proj:
            padding_mask = self.encoder.w2v_model.downsample_ctc_padding_mask(encoder_out["encoder_padding_mask"][0])
        else:
            padding_mask = encoder_out["encoder_padding_mask"]

        decoder_out = self.decoder(
            prev_output_tokens, encoder_out=encoder_out, **kwargs
        ) if self.cfg.add_decoder else None
        
        return {
            "encoder_out_ctc": x,           # (T, B, C), for CTC loss
            "padding_mask": padding_mask,   # (B, T), for CTC loss
            "decoder_out": decoder_out,     # for ED loss
        }
    
    def forward_decoder(self, prev_output_tokens, **kwargs):
        return self.decoder(prev_output_tokens, **kwargs)

    def get_logits(self, net_output):
        """For CTC decoding"""
        logits = net_output["encoder_out"]
        padding = net_output["encoder_padding_mask"]
        if padding is not None and padding.any():
            padding = padding.T
            logits[padding][..., 0] = 0
            logits[padding][..., 1:] = float("-inf")

        return logits

    def get_normalized_probs(self, net_output, log_probs, sample=None):
        """For 1) computing CTC loss, 2) decoder decoding."""

        if "encoder_out_ctc" in net_output:
            logits = net_output["encoder_out_ctc"]
        else:
            return self.decoder.get_normalized_probs(net_output, log_probs, sample)
        
        if isinstance(logits, list):
            logits = logits[0]

        if log_probs:
            return utils.log_softmax(logits.float(), dim=-1)
        else:
            return utils.softmax(logits.float(), dim=-1)

    @property
    def decoder(self):
        return self.encoder.w2v_model.decoder


class SpeechUTEncoder(HubertEncoder):
    """
    Modified from fairseq.models.hubert.hubert_asr.HubertEncoder
    1. make it compatible with encoder-decoder model
    """
    def __init__(self, cfg: HubertAsrConfig, task):
        super().__init__(cfg, task)
        
        if (task.target_dictionary is not None) and (
            hasattr(self.w2v_model, "unit_encoder_ctc_head")
        ):
            self.proj = self.w2v_model.unit_encoder_ctc_head
            self.conv_ctc_proj = True
        else:
            self.conv_ctc_proj = False
    
    def forward(self, source, padding_mask, tbc=True, **kwargs):
        w2v_args = {
            "source": source,
            "padding_mask": padding_mask,
            "mask": self.apply_mask and self.training,
        }
        ft = self.freeze_finetune_updates <= self.num_updates
        with torch.no_grad() if not ft else contextlib.ExitStack():
            x, padding_mask = self.w2v_model.extract_features(**w2v_args)
            if tbc:
                # B x T x C -> T x B x C
                x = x.transpose(0, 1)
        return {
            "encoder_out": [x],  # T x B x C
            "encoder_padding_mask": [padding_mask],  # B x T
        }
    
    def forward_torchscript(self, net_input):
        """A TorchScript-compatible version of forward.

        Forward the encoder out.
        """
        x, padding_mask = self.w2v_model.extract_features(**net_input, mask=False)
        # B x T x C -> T x B x C
        x = x.transpose(0, 1)

        encoder_out = {
            "encoder_out" : [x],
            "encoder_padding_mask" : [padding_mask],
        }
        if self.proj:
            x = self.proj(x)
            encoder_out["encoder_out_ctc"] = x

        return encoder_out

    def reorder_encoder_out(self, encoder_out, new_order):
        if encoder_out["encoder_out"] is not None:
            encoder_out["encoder_out"] = [
                x.index_select(1, new_order) for x in encoder_out["encoder_out"]
            ]
        if encoder_out["encoder_padding_mask"] is not None:
            encoder_out["encoder_padding_mask"] = [
                x.index_select(0, new_order) for x in encoder_out["encoder_padding_mask"]
            ]
        return encoder_out