File size: 20,289 Bytes
62e9ca6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
# --------------------------------------------------------
# Copyright (c) 2022 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Based on fairseq code bases
# https://github.com/facebookresearch/fairseq
# --------------------------------------------------------

"""
    Modified from https://github.com/facebookresearch/fairseq/blob/main/fairseq/models/transformer/transformer_decoder.py
"""

import math
from typing import Any, Dict, List, Optional

import torch
import torch.nn as nn
from fairseq import utils
from fairseq.distributed import fsdp_wrap
from fairseq.models import FairseqIncrementalDecoder
from fairseq.models.transformer import TransformerConfig
from fairseq.modules import (
    AdaptiveSoftmax,
    BaseLayer,
    FairseqDropout,
    LayerDropModuleList,
    LayerNorm,
    PositionalEmbedding,
    SinusoidalPositionalEmbedding,
)
from fairseq.modules.checkpoint_activations import checkpoint_wrapper
from fairseq.modules.quant_noise import quant_noise as apply_quant_noise_
from torch import Tensor

from speechut.modules import transformer_layer
from speechut.modules import RelativePositionalEncoding

# rewrite name for backward compatibility in `make_generation_fast_`
def module_name_fordropout(module_name: str) -> str:
    if module_name == "TransformerDecoderBase":
        return "TransformerDecoder"
    else:
        return module_name


class TransformerDecoderBase(FairseqIncrementalDecoder):
    """
    Transformer decoder consisting of *cfg.decoder.layers* layers. Each layer
    is a :class:`TransformerDecoderLayer`.

    Args:
        args (argparse.Namespace): parsed command-line arguments
        dictionary (~fairseq.data.Dictionary): decoding dictionary
        embed_tokens (torch.nn.Embedding): output embedding
        no_encoder_attn (bool, optional): whether to attend to encoder outputs
            (default: False).
    """

    def __init__(
        self,
        cfg,
        dictionary,
        embed_tokens,
        no_encoder_attn=False,
        output_projection=None,
        use_rel_pos_enc=False,
    ):
        self.cfg = cfg
        super().__init__(dictionary)
        self.register_buffer("version", torch.Tensor([3]))
        self._future_mask = torch.empty(0)

        self.dropout_module = FairseqDropout(
            cfg.dropout, module_name=module_name_fordropout(self.__class__.__name__)
        )
        self.decoder_layerdrop = cfg.decoder.layerdrop
        self.share_input_output_embed = cfg.share_decoder_input_output_embed

        input_embed_dim = embed_tokens.embedding_dim
        embed_dim = cfg.decoder.embed_dim
        self.embed_dim = embed_dim
        self.output_embed_dim = cfg.decoder.output_dim

        self.padding_idx = embed_tokens.padding_idx
        self.max_target_positions = cfg.max_target_positions

        self.embed_tokens = embed_tokens

        self.embed_scale = 1.0 if cfg.no_scale_embedding else math.sqrt(embed_dim)

        if not cfg.adaptive_input and cfg.quant_noise.pq > 0:
            self.quant_noise = apply_quant_noise_(
                nn.Linear(embed_dim, embed_dim, bias=False),
                cfg.quant_noise.pq,
                cfg.quant_noise.pq_block_size,
            )
        else:
            self.quant_noise = None

        self.project_in_dim = (
            Linear(input_embed_dim, embed_dim, bias=False)
            if embed_dim != input_embed_dim
            else None
        )
        self.embed_positions = (
            PositionalEmbedding(
                self.max_target_positions,
                embed_dim,
                self.padding_idx,
                learned=cfg.decoder.learned_pos,
            )
            if not cfg.no_token_positional_embeddings
            else None
        )
        if cfg.layernorm_embedding:
            self.layernorm_embedding = LayerNorm(embed_dim, export=cfg.export)
        else:
            self.layernorm_embedding = None

        self.cross_self_attention = cfg.cross_self_attention

        if self.decoder_layerdrop > 0.0:
            self.layers = LayerDropModuleList(p=self.decoder_layerdrop)
        else:
            self.layers = nn.ModuleList([])
        self.use_rel_pos_enc = use_rel_pos_enc
        self.layers.extend(
            [
                self.build_decoder_layer(cfg, no_encoder_attn)
                for _ in range(cfg.decoder.layers)
            ]
        )
        self.num_layers = len(self.layers)

        if cfg.decoder.normalize_before and not cfg.no_decoder_final_norm:
            self.layer_norm = LayerNorm(embed_dim, export=cfg.export)
        else:
            self.layer_norm = None

        self.project_out_dim = (
            Linear(embed_dim, self.output_embed_dim, bias=False)
            if embed_dim != self.output_embed_dim and not cfg.tie_adaptive_weights
            else None
        )

        self.adaptive_softmax = None
        self.output_projection = output_projection
        if self.output_projection is None:
            self.build_output_projection(cfg, dictionary, embed_tokens)
        if self.use_rel_pos_enc:
            self.pos_emb = RelativePositionalEncoding(embed_dim // cfg.decoder.attention_heads, 24)

    def build_output_projection(self, cfg, dictionary, embed_tokens):
        if cfg.adaptive_softmax_cutoff is not None:
            self.adaptive_softmax = AdaptiveSoftmax(
                len(dictionary),
                self.output_embed_dim,
                utils.eval_str_list(cfg.adaptive_softmax_cutoff, type=int),
                dropout=cfg.adaptive_softmax_dropout,
                adaptive_inputs=embed_tokens if cfg.tie_adaptive_weights else None,
                factor=cfg.adaptive_softmax_factor,
                tie_proj=cfg.tie_adaptive_proj,
            )
        elif self.share_input_output_embed:
            self.output_projection = nn.Linear(
                self.embed_tokens.weight.shape[1],
                self.embed_tokens.weight.shape[0],
                bias=False,
            )
            self.output_projection.weight = self.embed_tokens.weight
        else:
            self.output_projection = nn.Linear(
                self.output_embed_dim, len(dictionary), bias=False
            )
            nn.init.normal_(
                self.output_projection.weight, mean=0, std=self.output_embed_dim ** -0.5
            )
        num_base_layers = cfg.base_layers
        for i in range(num_base_layers):
            self.layers.insert(
                ((i + 1) * cfg.decoder.layers) // (num_base_layers + 1),
                BaseLayer(cfg),
            )

    def build_decoder_layer(self, cfg, no_encoder_attn=False):
        layer = transformer_layer.TransformerDecoderLayerBase(cfg, no_encoder_attn, has_relative_attention_bias=self.use_rel_pos_enc)
        checkpoint = cfg.checkpoint_activations
        if checkpoint:
            offload_to_cpu = cfg.offload_activations
            layer = checkpoint_wrapper(layer, offload_to_cpu=offload_to_cpu)
        # if we are checkpointing, enforce that FSDP always wraps the
        # checkpointed layer, regardless of layer size
        min_params_to_wrap = cfg.min_params_to_wrap if not checkpoint else 0
        layer = fsdp_wrap(layer, min_num_params=min_params_to_wrap)
        return layer

    def forward(
        self,
        prev_output_tokens,
        encoder_out: Optional[Dict[str, List[Tensor]]] = None,
        incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None,
        features_only: bool = False,
        full_context_alignment: bool = False,
        alignment_layer: Optional[int] = None,
        alignment_heads: Optional[int] = None,
        src_lengths: Optional[Any] = None,
        return_all_hiddens: bool = False,
    ):
        """
        Args:
            prev_output_tokens (LongTensor): previous decoder outputs of shape
                `(batch, tgt_len)`, for teacher forcing
            encoder_out (optional): output from the encoder, used for
                encoder-side attention, should be of size T x B x C
            incremental_state (dict): dictionary used for storing state during
                :ref:`Incremental decoding`
            features_only (bool, optional): only return features without
                applying output layer (default: False).
            full_context_alignment (bool, optional): don't apply
                auto-regressive mask to self-attention (default: False).

        Returns:
            tuple:
                - the decoder's output of shape `(batch, tgt_len, vocab)`
                - a dictionary with any model-specific outputs
        """

        x, extra = self.extract_features(
            prev_output_tokens,
            encoder_out=encoder_out,
            incremental_state=incremental_state,
            full_context_alignment=full_context_alignment,
            alignment_layer=alignment_layer,
            alignment_heads=alignment_heads,
        )

        if not features_only:
            x = self.output_layer(x)
        return x, extra

    def extract_features(
        self,
        prev_output_tokens,
        encoder_out: Optional[Dict[str, List[Tensor]]],
        incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None,
        full_context_alignment: bool = False,
        alignment_layer: Optional[int] = None,
        alignment_heads: Optional[int] = None,
    ):
        return self.extract_features_scriptable(
            prev_output_tokens,
            encoder_out,
            incremental_state,
            full_context_alignment,
            alignment_layer,
            alignment_heads,
        )

    """
    A scriptable subclass of this class has an extract_features method and calls
    super().extract_features, but super() is not supported in torchscript. A copy of
    this function is made to be used in the subclass instead.
    """

    def extract_features_scriptable(
        self,
        prev_output_tokens,
        encoder_out: Optional[Dict[str, List[Tensor]]],
        incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None,
        full_context_alignment: bool = False,
        alignment_layer: Optional[int] = None,
        alignment_heads: Optional[int] = None,
    ):
        """
        Similar to *forward* but only return features.

        Includes several features from "Jointly Learning to Align and
        Translate with Transformer Models" (Garg et al., EMNLP 2019).

        Args:
            full_context_alignment (bool, optional): don't apply
                auto-regressive mask to self-attention (default: False).
            alignment_layer (int, optional): return mean alignment over
                heads at this layer (default: last layer).
            alignment_heads (int, optional): only average alignment over
                this many heads (default: all heads).

        Returns:
            tuple:
                - the decoder's features of shape `(batch, tgt_len, embed_dim)`
                - a dictionary with any model-specific outputs
        """
        bs, slen = prev_output_tokens.size()
        if alignment_layer is None:
            alignment_layer = self.num_layers - 1

        enc: Optional[Tensor] = None
        padding_mask: Optional[Tensor] = None
        if encoder_out is not None and len(encoder_out["encoder_out"]) > 0:
            enc = encoder_out["encoder_out"][0]
            assert (
                enc.size()[1] == bs
            ), f"Expected enc.shape == (t, {bs}, c) got {enc.shape}"
        if encoder_out is not None and len(encoder_out["encoder_padding_mask"]) > 0:
            padding_mask = encoder_out["encoder_padding_mask"][0]

        # embed positions
        positions = None
        if self.embed_positions is not None:
            positions = self.embed_positions(
                prev_output_tokens, incremental_state=incremental_state
            )

        if incremental_state is not None:
            prev_output_tokens = prev_output_tokens[:, -1:]
            if positions is not None:
                positions = positions[:, -1:]

        # embed tokens and positions
        x = self.embed_scale * self.embed_tokens(prev_output_tokens)

        if self.quant_noise is not None:
            x = self.quant_noise(x)

        if self.project_in_dim is not None:
            x = self.project_in_dim(x)

        if positions is not None:
            x += positions

        if self.layernorm_embedding is not None:
            x = self.layernorm_embedding(x)

        x = self.dropout_module(x)

        # B x T x C -> T x B x C
        x = x.transpose(0, 1)
        if self.use_rel_pos_enc:
            pos_seq = torch.arange(0, slen).long().to(x.device)
            pos_seq = pos_seq[:, None] - pos_seq[None, :]
            pos_k, _ = self.pos_emb(pos_seq, incremental_state)
        else:
            pos_k = None

        self_attn_padding_mask: Optional[Tensor] = None
        if self.cross_self_attention or prev_output_tokens.eq(self.padding_idx).any():
            self_attn_padding_mask = prev_output_tokens.eq(self.padding_idx)

        # decoder layers
        attn: Optional[Tensor] = None
        inner_states: List[Optional[Tensor]] = [x]
        for idx, layer in enumerate(self.layers):
            if incremental_state is None and not full_context_alignment:
                self_attn_mask = self.buffered_future_mask(x)
            else:
                self_attn_mask = None

            x, layer_attn, _ = layer(
                x,
                enc,
                padding_mask,
                incremental_state,
                self_attn_mask=self_attn_mask,
                self_attn_padding_mask=self_attn_padding_mask,
                need_attn=bool((idx == alignment_layer)),
                need_head_weights=bool((idx == alignment_layer)),
                pos_bias=pos_k,
            )
            inner_states.append(x)
            if layer_attn is not None and idx == alignment_layer:
                attn = layer_attn.float().to(x)

        if attn is not None:
            if alignment_heads is not None:
                attn = attn[:alignment_heads]

            # average probabilities over heads
            attn = attn.mean(dim=0)

        if self.layer_norm is not None:
            x = self.layer_norm(x)

        # T x B x C -> B x T x C
        x = x.transpose(0, 1)

        if self.project_out_dim is not None:
            x = self.project_out_dim(x)

        return x, {"attn": [attn], "inner_states": inner_states}

    def output_layer(self, features):
        """Project features to the vocabulary size."""
        if self.adaptive_softmax is None:
            # project back to size of vocabulary
            return self.output_projection(features)
        else:
            return features

    def max_positions(self):
        """Maximum output length supported by the decoder."""
        if self.embed_positions is None:
            return self.max_target_positions
        return min(self.max_target_positions, self.embed_positions.max_positions)

    def buffered_future_mask(self, tensor):
        dim = tensor.size(0)
        # self._future_mask.device != tensor.device is not working in TorchScript. This is a workaround.
        if (
            self._future_mask.size(0) == 0
            or (not self._future_mask.device == tensor.device)
            or self._future_mask.size(0) < dim
        ):
            self._future_mask = torch.triu(
                utils.fill_with_neg_inf(torch.zeros([dim, dim])), 1
            )
        self._future_mask = self._future_mask.to(tensor)
        return self._future_mask[:dim, :dim]

    def upgrade_state_dict_named(self, state_dict, name):
        """Upgrade a (possibly old) state dict for new versions of fairseq."""
        if isinstance(self.embed_positions, SinusoidalPositionalEmbedding):
            weights_key = "{}.embed_positions.weights".format(name)
            if weights_key in state_dict:
                del state_dict[weights_key]
            state_dict[
                "{}.embed_positions._float_tensor".format(name)
            ] = torch.FloatTensor(1)

        if f"{name}.output_projection.weight" not in state_dict:
            if self.share_input_output_embed:
                embed_out_key = f"{name}.embed_tokens.weight"
            else:
                embed_out_key = f"{name}.embed_out"
            if embed_out_key in state_dict:
                state_dict[f"{name}.output_projection.weight"] = state_dict[
                    embed_out_key
                ]
                if not self.share_input_output_embed:
                    del state_dict[embed_out_key]

        for i in range(self.num_layers):
            # update layer norms
            layer_norm_map = {
                "0": "self_attn_layer_norm",
                "1": "encoder_attn_layer_norm",
                "2": "final_layer_norm",
            }
            for old, new in layer_norm_map.items():
                for m in ("weight", "bias"):
                    k = "{}.layers.{}.layer_norms.{}.{}".format(name, i, old, m)
                    if k in state_dict:
                        state_dict[
                            "{}.layers.{}.{}.{}".format(name, i, new, m)
                        ] = state_dict[k]
                        del state_dict[k]

        version_key = "{}.version".format(name)
        if utils.item(state_dict.get(version_key, torch.Tensor([1]))[0]) <= 2:
            # earlier checkpoints did not normalize after the stack of layers
            self.layer_norm = None
            self.normalize = False
            state_dict[version_key] = torch.Tensor([1])

        return state_dict


def Linear(in_features, out_features, bias=True):
    m = nn.Linear(in_features, out_features, bias)
    nn.init.xavier_uniform_(m.weight)
    if bias:
        nn.init.constant_(m.bias, 0.0)
    return m

class TransformerDecoderBaseScriptable(TransformerDecoderBase):
    def extract_features(
        self,
        prev_output_tokens,
        encoder_out: Optional[Dict[str, List[Tensor]]] = None,
        incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None,
        full_context_alignment: bool = False,
        alignment_layer: Optional[int] = None,
        alignment_heads: Optional[int] = None,
    ):
        # call scriptable method from parent class
        x, _ = self.extract_features_scriptable(
            prev_output_tokens,
            encoder_out,
            incremental_state,
            full_context_alignment,
            alignment_layer,
            alignment_heads,
        )
        return x, None


class TransformerDecoder(TransformerDecoderBase):
    def __init__(
        self,
        args,
        dictionary,
        embed_tokens,
        no_encoder_attn=False,
        output_projection=None,
    ):
        self.args = args
        super().__init__(
            TransformerConfig.from_namespace(args),
            dictionary,
            embed_tokens,
            no_encoder_attn=no_encoder_attn,
            output_projection=output_projection,
            use_rel_pos_enc=getattr(args, "use_rel_pos_enc", False),
        )

    def build_output_projection(self, args, dictionary, embed_tokens):
        super().build_output_projection(
            TransformerConfig.from_namespace(args), dictionary, embed_tokens
        )

    def build_decoder_layer(self, args, no_encoder_attn=False):
        return super().build_decoder_layer(
            TransformerConfig.from_namespace(args), no_encoder_attn=no_encoder_attn
        )

class TransformerDecoderScriptable(TransformerDecoder):
    def extract_features(
        self,
        prev_output_tokens,
        encoder_out: Optional[Dict[str, List[Tensor]]] = None,
        incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None,
        full_context_alignment: bool = False,
        alignment_layer: Optional[int] = None,
        alignment_heads: Optional[int] = None,
    ):
        # call scriptable method from parent class
        x, _ = self.extract_features_scriptable(
            prev_output_tokens,
            encoder_out,
            incremental_state,
            full_context_alignment,
            alignment_layer,
            alignment_heads,
        )
        return x, None