File size: 2,219 Bytes
62e9ca6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
#####################################
# SpeechUT ASR model #
#####################################
[ $# -lt 2 ] && echo "Usage: $0 <model_path> <data_dir> [gen-set=dev_other] [beam_size=30] [ctc_weight=0.3] [lm_weight=0.7] [lm_path] [--normalize]" && exit 1
[ ${PWD##*/} != SpeechUT ] && echo "Error: dir not match! Switch to SpeechUT/ and run it again!" && exit 1

model_path=$1
DATA_DIR=$2
gen_set=$3
beam_size=$4
ctc_weight=$5
lm_weight=$6
lm_path=$7
extra=$8
[ -z $extra ] && echo "Assert decoding base model! If you are decoding large model, please add '--normalize' at the end..."
[ -z $gen_set ] && gen_set="dev_other"
[ -z $beam_size ] && beam_size=30
[ -z $ctc_weight ] && ctc_weight=0.3
[ -z $lm_weight ] && lm_weight=0.7
[ -z $lm_path ] && lm_path="/mnt/default/v-junyiao/librispeech/lm/lm_ctc_form/checkpoint_best.pt"
[ $ctc_weight == 0 ] && [ $beam_size != 1 ] && echo "Change beam size to 1 and lm_weight to 0 as no ctc-decoding used..." && beam_size=1 && lm_weight=0
[ $ctc_weight != 0 ] && extra="$extra --batch-size 1"

src_dir=${model_path%/*}
cpt=${model_path##*/}
cpt=${cpt%.*}

CODE_ROOT=${PWD}

for subset in ${gen_set//,/ }; do
    results_path=$src_dir/decode_${cpt}/beam${beam_size}_ctc${ctc_weight}_lm${lm_weight}/${subset}_${world_size}_${rank}
    [ ! -d $results_path ] && mkdir -p $results_path

    python $CODE_ROOT/fairseq/fairseq_cli/generate.py $DATA_DIR \
    --user-dir $CODE_ROOT/speechut \
    --label-dir ${DATA_DIR} \
    --labels '["ltr"]' \
    --single-target \
    --post-process letter \
    --gen-subset ${subset} \
    --max-tokens 800000 \
    \
    --task joint_sc2t_pretraining \
    --add-decoder-target \
    --fine-tuning \
    --pad-audio \
    --random-crop \
    \
    --ctc-weight ${ctc_weight} $extra \
    --lm-weight ${lm_weight} --lm-path ${lm_path} \
    --beam ${beam_size} \
    \
    --path ${model_path} \
    --results-path ${results_path} \
    \
    --scoring wer --max-len-a 0.00078125 --max-len-b 200 \
    &
done
wait


for subset in ${gen_set//,/ }; do
    results_path=$src_dir/decode_${cpt}/beam${beam_size}_ctc${ctc_weight}_lm${lm_weight}/${subset}_${world_size}_${rank}
    echo $results_path
    tail -n 1 $results_path/generate-*.txt
done