File size: 40,295 Bytes
62e9ca6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
# ----------------------------------------------------------------------------
# SpeechUT: Bridging Speech and Text with Hidden-Unit for Encoder-Decoder Based Speech-Text Pre-training (https://arxiv.org/abs/2210.03730)
# Github source: https://github.com/microsoft/SpeechT5/tree/main/SpeechUT
# Code based on fairseq: https://github.com/facebookresearch/fairseq/tree/272c4c5197250997148fb12c0db6306035f166a4
# 
# Copyright (c) 2022 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# ----------------------------------------------------------------------------

import logging
import os
import sys
from typing import Dict, List, Optional, Tuple
from pathlib import Path

import numpy as np
from argparse import Namespace
from collections import OrderedDict

import torch
from dataclasses import dataclass, field
from fairseq.data import (
    Dictionary,
    encoders,
    data_utils,
    StripTokenDataset,
    PrependTokenDataset,
    AppendTokenDataset,
    DenoisingDataset,
    ConcatDataset,
    FairseqDataset,
    iterators,
    ResamplingDataset,
    MaskTokensDataset,
    LanguagePairDataset,
)
from fairseq.data.audio.speech_to_text_joint_dataset import S2TJointDataConfig
from fairseq.data.shorten_dataset import maybe_shorten_dataset
# from fairseq.data.encoders.utils import get_whole_word_mask
from fairseq.dataclass.configs import FairseqDataclass
from fairseq.tasks import register_task
from fairseq.tasks.fairseq_task import FairseqTask
from fairseq.dataclass.constants import ChoiceEnum
from omegaconf import MISSING

from speechut.data.multimodal_corpus_dataset import MultiCorpusDataset
from speechut.data.load_langpair_dataset  import load_langpair_dataset
from speechut.data.language_trible_dataset import LanguageTripleDataset, load_langtriple_dataset
from speechut.data.hubert_dataset import HubertDataset

logger = logging.getLogger(__name__)

TOKENIZER_CHOICES = ChoiceEnum(["sentencepiece", "hubert_letters", "none"])

def _lang_token(lang: str):
    return "<lang:{}>".format(lang)

def _lang_token_index(dic: Dictionary, lang: str):
    """Return language token index."""
    idx = dic.index(_lang_token(lang))
    assert idx != dic.unk_index, "cannot find language token for lang {}".format(lang)
    return idx


class LabelEncoder(object):
    def __init__(self, dictionary: Dictionary) -> None:
        self.dictionary = dictionary

    def __call__(self, label: str) -> List[str]:
        return self.dictionary.encode_line(
            label, append_eos=False, add_if_not_exist=False,
        )


### wrap the initial get_whole_word_mask which needs bpe_tokenizer,
### here we just assume words are splited by "|" or "<SIL>"
def get_whole_word_mask(args, dictionary):
    def is_beginning_of_word(i):
        if i < dictionary.nspecial:
            # special elements are always considered beginnings
            return True
        tok = dictionary[i]
        if tok.startswith("madeupword"):
            return True
        elif tok in ["<unk>", "<s>", "</s>", "<pad>", "|", "<eps>"]:
            return True
        else:
            return False

    mask_whole_words = torch.ByteTensor(
        list(map(is_beginning_of_word, range(len(dictionary))))
    )
    return mask_whole_words

def get_repeative_start(tokens):
    """
    tokens: torch.Tensor with repeative tokens
    """
    length = len(tokens)
    rep_start_id = tokens[:-1] != tokens[1:]
    return torch.cat([torch.tensor([True]), rep_start_id])

@dataclass
class TextPretrainingConfig(FairseqDataclass):    
    ### added for joint pretraining
    text_data: Optional[str] = field(
        default=None,
        metadata={
            "help": "if set, path to text data directory",
        },
    )
    seed: Optional[int] = field(
        default=1,
        metadata={
            "help": "for ordered_indices in MulticorpusDataset",
        },
    )
    tokens_per_sample: Optional[int] = field(
        default=512,
        metadata={
            "help": "max number of total tokens over all segments per sample for dataset",
        },
    )
    tokens_per_sample_tgt: Optional[int] = field(
        default=512,
        metadata={
            "help": "max number of total tokens over all segments per target sample for dataset",
        },
    )
    sample_break_mode: Optional[str] = field(
        default="eos",
        metadata={
            "help": "mode for breaking sentence",
        },
    )
    mask: Optional[float] = field(
        default=0.3,
        metadata={
            "help": "fraction of words/subwords that will be masked",
        },
    )
    leave_unmasked_prob: float = field(
        default=0.1,
        metadata={"help": "probability that a masked token is unmasked"},
    )
    mask_random: Optional[float] = field(
        default=0.1,
        metadata={
            "help": "instead of using [MASK], use random token this often",
        },
    )
    freq_weighted_replacement: bool = field(
        default=False,
        metadata={"help": "sample random replacement words based on word frequencies"},
    )
    mask_whole_words: bool = field(
        default=True,
        metadata={"help": "mask whole words; you may also want to set --bpe"},
    )
    mask_repeative_tokens: bool = field(
        default=True,
        metadata={"help": "mask repeative_tokens; if mask_whole_words=False"},
    )
    mask_multiple_length: int = field(
        default=1,
        metadata={"help": "repeat the mask indices multiple times"},
    )
    mask_stdev: float = field(
        default=0.0,
        metadata={"help": "stdev of the mask length"},
    )
    shorten_method: Optional[str] = field(
        default="none",
        metadata={
            "help": "if not none, shorten sequences that exceed tokens_per_sample",
            "choices": "none/truncate/random_crop"
        },
    )
    shorten_data_split_list: Optional[str] = field(
        default="",
        metadata={
            "help": "comma_separated list of dataset splits to apply shortening to, e.g., train,valid (default: all dataset splits)",
        },
    )

    ### below hypra-parameters is used in bart
    insert: Optional[float] = field(
        default=0.0,
        metadata={
            "help": "insert this percentage of additional random tokens",
        },
    )
    permute: Optional[float] = field(
        default=0.0,
        metadata={
            "help": "take this proportion of subwords and permute them",
        },
    )
    rotate: Optional[float] = field(
        default=0.0,
        metadata={
            "help": "rotate this proportion of inputs",
        },
    )
    poisson_lambda: Optional[float] = field(
        default=3.5,
        metadata={
            "help": "randomly shuffle sentences for this proportion of inputs",
        },
    )
    permute_sentences: Optional[float] = field(
        default=0.0,
        metadata={
            "help": "shuffle this proportion of sentences in all inputs",
        },
    )
    mask_length: Optional[str] = field(
        default="span-poisson",
        metadata={
            "help": "mask length to choose",
            "choice": "subword/word/span-poisson"
        },
    )
    replace_length: Optional[int] = field(
        default=1,
        metadata={
            "help": "when masking N tokens, replace with 0, 1, or N tokens (use -1 for N)",
        },
    )
    shuffle_instance: Optional[bool] = field(
        default=False,
        metadata={"help": "shuffle instance"},
    )
    max_source_positions: Optional[int] = field(
        default=1024,
        metadata={"help": "max number of tokens in the source sequence"},
    )
    max_target_positions: Optional[int] = field(
        default=1024,
        metadata={"help": "max number of tokens in the target sequence"},
    )
    bpe: Optional[str] = field(
        default="",
        metadata={
            "help": "will wrapped by the text_data_config yaml",
        },
    )
    data_config: Optional[str] = field(
        default=None,
        metadata={
            "help": "a config yaml specify the bpe model of text data",
        },
    )
    text_maxtokens_ratio: Optional[float] = field(
        default=1.0,
        metadata={
            "help": "for text, max_tokens = max_tokens * text_maxtokens_ratio / 320 ",
        },
    )
    prepend_tgt_lang_tag: bool = field(
        default=False,
        metadata={"help": "prepend tgt_lang_tag to replace <eos>"},
    )
    mask_text_ratio: Optional[float] = field(
        default=0.0,
        metadata={
            "help": "mask_text_ratio, for paired data",
        },
    )
    truncate_mono_source: bool = field(
        default=True,
        metadata={"help": "truncate mono source-side examples that exceed max-positions"},
    )


@dataclass
class JointPretrainingConfig(FairseqDataclass):
    data: str = field(
        default=MISSING, metadata={"help": "path to speech data directory"}
    )
    fine_tuning: bool = field(
        default=False, metadata={"help": "set to true if fine-tuning Hubert"}
    )
    labels: List[str] = field(
        default_factory=lambda: ["ltr"],
        metadata={
            "help": (
                "extension of the label files to load, frame-level labels for"
                " pre-training, and sequence-level label for fine-tuning"
            )
        },
    )
    label_dir: Optional[str] = field(
        default=None,
        metadata={
            "help": "if set, looks for labels in this directory instead",
        },
    )
    label_rate: int = field(
        default=-1,
        metadata={"help": "label frame rate. -1 for sequence label"},
    )
    sample_rate: int = field(
        default=16_000,
        metadata={
            "help": "target sample rate. audio files will be up/down "
            "sampled to this rate"
        },
    )
    normalize: bool = field(
        default=False,
        metadata={
            "help": "if set, normalizes input to have 0 mean and unit variance"
        },
    )
    enable_padding: bool = field(
        default=False,
        metadata={"help": "pad shorter samples instead of cropping"},
    )
    max_keep_size: Optional[int] = field(
        default=None,
        metadata={"help": "exclude sample longer than this"},
    )
    max_sample_size: Optional[int] = field(
        default=None,
        metadata={"help": "max sample size to crop to for batching"},
    )
    min_sample_size: Optional[int] = field(
        default=None,
        metadata={"help": "min sample size to crop to for batching"},
    )
    single_target: Optional[bool] = field(
        default=False,
        metadata={
            "help": "if set, AddTargetDatasets outputs same keys "
            "as AddTargetDataset"
        },
    )
    random_crop: Optional[bool] = field(
        default=True,
        metadata={"help": "always crop from the beginning if false"},
    )
    pad_audio: Optional[bool] = field(
        default=False,
        metadata={"help": "pad audio to the longest one in the batch if true"},
    )
    store_labels: Optional[bool] = field(
        default=True,
        metadata={"help": "store spm labels in memory, should be true when fine-tune with bpe"},
    )
    add_decoder_target: bool = field(
        default=False,
        metadata={"help": "contral the model architecture, if set True, load reduced unit as target"},
    )
    split_modality_batch: bool = field(
        default=False,
        metadata={"help": "whether create all samples of different modalities in a batch"},
    )
    speech_tgt_lang: str = field(
        default="",
        metadata={"help": "prepend <tgt-id> to prev_output_tokens to replace <eos>, only used for decoder"},
    )
    speech_sampling_alpha: float = field(
        default=0.2,
        metadata={
            "help": "Hyper-parameter alpha = 1/T for temperature-based speech resampling."
            "(alpha = 1 for no resampling)"
        },
    )
    text_sampling_alpha: float = field(
        default=0.2,
        metadata={
            "help": "Hyper-parameter alpha = 1/T for temperature-based text resampling."
            "(alpha = 1 for no resampling)"
        },
    )
    hubert_tokenizer: Optional[TOKENIZER_CHOICES] = field(
        default="none",
        metadata={"help": "which tokenizer for processing text"},
    )
    sp_path: Optional[str] = field(
        default=None,
        metadata={"help": "sentencepiece model path if using bpe tokenizer"},
    )
    text_cfg: TextPretrainingConfig = TextPretrainingConfig()
    # For inference
    ctc_weight: float = field(
        default=0.0,
        metadata={"help": "ctc weight during inference"},
    )
    lm_dict: Optional[str] = field(
        default="dict.txt",
        metadata={"help": "dict used for decoding with language model, should be in cfg.data/"},
    )

@register_task("joint_sc2t_pretraining", dataclass=JointPretrainingConfig)
class Jsc2tPretrainingTask(FairseqTask):

    cfg: JointPretrainingConfig

    def __init__(
        self,
        cfg: JointPretrainingConfig,
        load_local_states: True,
    ) -> None:
        super().__init__(cfg)

        logger.info(f"current directory is {os.getcwd()}")
        logger.info(f"JSTPretrainingTask Config {cfg}")

        self.cfg = cfg
        self.fine_tuning = cfg.fine_tuning
        self.blank_symbol = "<s>"

        if load_local_states:
            self.state.add_factory("hubert_tokenizer", self.build_tokenizer)
            if self.cfg.text_cfg.text_data is not None and os.path.exists(self.cfg.text_cfg.text_data):
                self.state.add_factory("text_dictionary", self.load_text_dictionary)
                self.state.add_factory("text_src_dictionary", self.load_text_src_dictionary)
            if cfg.fine_tuning:
                self.state.add_factory("target_dictionary", self.load_dictionaries)
            else:
                self.state.add_factory("dictionaries", self.load_dictionaries)

            if cfg.text_cfg.data_config is not None:
                self.text_data_cfg = S2TJointDataConfig(Path(f"{cfg.text_cfg.text_data}/{cfg.text_cfg.data_config}"))
                self.cfg.text_cfg.bpe = self.text_data_cfg.bpe_tokenizer["bpe"]
            else:
                self.text_data_cfg = None

    @property
    def source_dictionary(self) -> Optional[Dictionary]:
        return None

    @property
    def target_dictionary(self) -> Optional[Dictionary]:
        return self.state.target_dictionary

    @property
    def dictionaries(self) -> List[Dictionary]:
        return self.state.dictionaries

    @property
    def text_dictionary(self) -> Optional[Dictionary]:
        return self.state.text_dictionary

    @property
    def text_src_dictionary(self) -> Optional[Dictionary]:
        return self.state.text_src_dictionary

    @property
    def hubert_tokenizer(self):
        return self.state.hubert_tokenizer

    def load_dictionaries(self):
        label_dir = self.cfg.data if self.cfg.label_dir is None else self.cfg.label_dir
        dictionaries = [Dictionary.load(f"{label_dir}/dict.{label}.txt") for label in self.cfg.labels]
        if not self.cfg.fine_tuning:
            for dictionary in dictionaries:
                dictionary.add_symbol("<mask>")
        return dictionaries[0] if self.cfg.fine_tuning else dictionaries
    
    def load_text_dictionary(self):
        tgt_dict_path = f"{self.cfg.text_cfg.text_data}/{self.text_data_cfg.vocab_filename if self.text_data_cfg is not None else 'dict.txt'}"
        if not os.path.isfile(tgt_dict_path):
            raise FileNotFoundError(f"Dict not found: {tgt_dict_path}")
        text_dictionary = Dictionary.load(tgt_dict_path)
        self.mask_idx = text_dictionary.add_symbol("<mask>")
        return text_dictionary

    def load_text_src_dictionary(self):
        src_dict_path = f"{self.cfg.text_cfg.text_data}/{self.text_data_cfg.src_vocab_filename if self.text_data_cfg is not None else 'dict.txt'}"
        if not os.path.isfile(src_dict_path):
            raise FileNotFoundError(f"Dict not found: {src_dict_path}")
        src_text_dictionary = Dictionary.load(src_dict_path)
        self.mask_idx = src_text_dictionary.add_symbol("<mask>")
        return src_text_dictionary

    @classmethod
    def setup_task(
        cls, cfg: JointPretrainingConfig, **kwargs
    ) -> "Jsc2tPretrainingTask":
        load_local_states = kwargs.get("load_local_states", True)
        return cls(cfg, load_local_states)

    def get_label_dir(self) -> str:
        if self.cfg.label_dir is None:
            return self.cfg.data
        return self.cfg.label_dir
    
    def load_paired_dataset(self, text_split, truncate_source=False):
        text_split, lp = text_split.rsplit('.', 1)       # e.g. "libritext.ltr-ltr"
        if len(lp.split("-")) == 2:
            src, tgt = lp.split("-")
            if src == tgt:
                logger.warn(f"| trying to load monolingual dataset {text_split}.{lp}, please check your task is right.")
                paired_dataset = self.load_char_bart_dataset(f"{text_split}.{lp}.{tgt}")
                return paired_dataset
            paired_dataset = load_langpair_dataset(
                self.cfg.text_cfg.text_data,
                text_split,
                src,
                self.text_src_dictionary,
                tgt,
                self.text_dictionary,
                combine=True,
                dataset_impl=None,
                upsample_primary=1,
                left_pad_source=False,
                left_pad_target=False,
                max_source_positions=self.cfg.text_cfg.tokens_per_sample,
                max_target_positions=self.cfg.text_cfg.tokens_per_sample,
                truncate_source=truncate_source,
                prepend_bos=False,
                load_alignments=False,
                append_source_id=True if self.cfg.text_cfg.prepend_tgt_lang_tag else False,
                lang_format="<lang:{}>" if self.cfg.text_cfg.prepend_tgt_lang_tag else "[{}]",
                input_feeding=self.cfg.add_decoder_target,
            )
            if self.cfg.text_cfg.mask_text_ratio > 0:
                # add mask
                self.mask_idx = self.text_src_dictionary.index("<mask>")
                mask_whole_words = None
                if self.cfg.text_cfg.mask_whole_words:
                    mask_whole_words = get_whole_word_mask(self.cfg.text_cfg, self.text_src_dictionary)
                elif self.cfg.text_cfg.mask_repeative_tokens:
                    mask_whole_words = get_repeative_start
                
                src_dataset, src_unmasked_dataset = MaskTokensDataset.apply_mask(
                    paired_dataset.src,
                    self.text_src_dictionary,
                    pad_idx=self.text_src_dictionary.pad(),
                    mask_idx=self.mask_idx,
                    seed=self.cfg.text_cfg.seed,
                    mask_prob=self.cfg.text_cfg.mask_text_ratio,
                    leave_unmasked_prob=self.cfg.text_cfg.leave_unmasked_prob,
                    random_token_prob=self.cfg.text_cfg.mask_random,
                    freq_weighted_replacement=self.cfg.text_cfg.freq_weighted_replacement,
                    mask_whole_words=mask_whole_words,
                    mask_multiple_length=self.cfg.text_cfg.mask_multiple_length,
                    mask_stdev=self.cfg.text_cfg.mask_stdev,
                )
                tgt_dataset = paired_dataset.tgt if paired_dataset.tgt is not None else src_unmasked_dataset
                paired_dataset = LanguageTripleDataset(
                    src_dataset,
                    src_dataset.sizes,
                    self.text_src_dictionary,
                    src_unmasked_dataset,
                    src_unmasked_dataset.sizes,
                    self.text_src_dictionary,
                    tgt_dataset,
                    tgt_dataset.sizes,
                    self.text_dictionary,
                    left_pad_source=False,
                    left_pad_target=False,
                    align_dataset=None,
                    eos=None,
                    num_buckets=0,
                    shuffle=True,
                    pad_to_multiple=1,
                )
        else:
            src, ref, tgt = lp.split("-")
            paired_dataset = load_langtriple_dataset(
                self.cfg.text_cfg.text_data,
                text_split,
                src,
                self.text_src_dictionary,
                ref,
                self.dictionaries[-1],
                tgt,
                self.text_dictionary,
                combine=True,
                dataset_impl=None,
                upsample_primary=1,
                left_pad_source=False,
                left_pad_target=False,
                max_source_positions=self.cfg.text_cfg.tokens_per_sample,
                max_target_positions=self.cfg.text_cfg.tokens_per_sample,
                truncate_source=truncate_source,
                prepend_bos=False,
                load_alignments=False,
                append_source_id=True if self.cfg.text_cfg.prepend_tgt_lang_tag else False,
                lang_format="<lang:{}>" if self.cfg.text_cfg.prepend_tgt_lang_tag else "[{}]",
            )
        return paired_dataset

    def load_dataset(self, split: str, epoch=1, **kwargs) -> None:
        """
            Create Wav dataset for audio, and Index dataset for phonemized text, 
            then concatenate them to by fairseq.data.multi_corpus_dataset.MultiCorpusDataset.
        """
        speech_splits = split.split('+')[0].split(',')
        ### 1st, create a speech dataset using STSpeechDataset (modified from HubertDataset)
        dicts = [self.target_dictionary] if self.cfg.fine_tuning else self.dictionaries
        pad_list = [dict.pad() for dict in dicts]
        eos_list = [dict.eos() for dict in dicts]
        procs = [LabelEncoder(dict) for dict in dicts]
        if self.cfg.speech_tgt_lang != "":
            tgt_lang_idx = _lang_token_index(dicts[0], self.cfg.speech_tgt_lang)
            logger.info(f"Will prepend <{tgt_lang_idx}> at the beginning of prev_output_tokens to replace <eos>")
        else:
            tgt_lang_idx = None


        # hubert v1: pad_audio=True, random_crop=False;
        speech_datasets = []
        for speech_split in speech_splits:
            paths = [
                f"{self.get_label_dir()}/{speech_split}.{l}" for l in self.cfg.labels
            ]
            speech_datasets.append(
                HubertDataset(
                    f"{self.cfg.data}/{speech_split}.tsv",
                    sample_rate=self.cfg.sample_rate,
                    label_paths=paths,
                    label_rates=self.cfg.label_rate,
                    pad_list=pad_list,
                    eos_list=eos_list,
                    label_processors=procs,
                    max_keep_sample_size=self.cfg.max_keep_size,
                    min_keep_sample_size=self.cfg.min_sample_size,
                    max_sample_size=self.cfg.max_sample_size,
                    pad_audio=self.cfg.pad_audio,
                    normalize=self.cfg.normalize,
                    store_labels=self.cfg.store_labels,
                    random_crop=self.cfg.random_crop,
                    single_target=self.cfg.single_target,
                    tgt_dict=dicts[0],
                    add_decoder_target=self.cfg.add_decoder_target,
                    fine_tuning=self.cfg.fine_tuning,
                    tgt_lang_idx=tgt_lang_idx,
                    tokenizer=self.hubert_tokenizer,
                )
            )
        if len(speech_datasets) > 1:
            speech_dataset = ConcatDataset(speech_datasets)
        else:
            speech_dataset = speech_datasets[0]

        has_text = len(split.split('+')) > 1
        if not has_text:
            assert speech_dataset is not None
            self.datasets[split] = speech_dataset
            return

        ### 2nd, create paired/mono text datasets using Langpairdataset
        if split.split('+')[1] != '':
            paired_splits = [paired_split for paired_split in split.split('+')[1].split(',') if paired_split != '']
            paired_datasets = [self.load_paired_dataset(paired_split) for paired_split in paired_splits]
        else:
            paired_splits, paired_datasets = [], []

        if len(split.split('+')) > 2 and split.split('+')[2] != '':
            mono_splits = [mono_split for mono_split in split.split('+')[2].split(',') if mono_split != '']
            mono_datasets = [self.load_paired_dataset(mono_split, truncate_source=self.cfg.text_cfg.truncate_mono_source) for mono_split in mono_splits]
        else:
            mono_splits, mono_datasets = [], []
        
        assert len(mono_datasets + paired_datasets) > 0, f"split {split} has no text! you should check out for that"

        ### 3rd, if provided, create a supervised dataset with labeled data
        if len(split.split('+')) > 3 and split.split('+')[3] != '':
            assert len(paired_splits) > 0, f"supervised dataset can not be loaded without text paired dataset!"
            tgt = paired_splits[0].rsplit('.', 1)[1].split("-")[1]
            sup_split = split.split('+')[3]

            sup_dataset = HubertDataset(
                f"{self.cfg.data}/{sup_split}.tsv",
                sample_rate=self.cfg.sample_rate,
                label_paths=[f"{self.get_label_dir()}/{sup_split}.{tgt}"],
                label_rates=[-1],
                pad_list=[self.text_dictionary.pad()],
                eos_list=[self.text_dictionary.eos()],
                label_processors=[LabelEncoder(self.text_dictionary)],
                max_keep_sample_size=self.cfg.max_keep_size,
                min_keep_sample_size=None,
                max_sample_size=None,
                pad_audio=True,
                normalize=self.cfg.normalize,
                store_labels=self.cfg.store_labels,
                random_crop=False,
                single_target=True,
                tgt_dict=self.text_dictionary,
                add_decoder_target=self.cfg.add_decoder_target,
                fine_tuning=True,
                tgt_lang_idx=None,
                tokenizer=None,
            )
        else:
            sup_dataset = None

        ### 4th, compose a MultiCorpusDataset
        dataset_dict, max_positions_dict, distributions, max_tokens_ratios = self.resample_multi_modality_dataset(
        speech_dataset, sup_dataset, mono_datasets, paired_datasets, mono_splits, paired_splits, epoch=epoch,
        )
        self.datasets[split] = MultiCorpusDataset(
            dataset_dict,
            max_positions=max_positions_dict,
            distribution=distributions,
            max_tokens_ratio=max_tokens_ratios,
            seed=self.cfg.text_cfg.seed,
            sort_indices=True,
        )


    def max_positions(self) -> Tuple[int, int]:
        return (sys.maxsize, sys.maxsize)

    def filter_indices_by_size(
        self, indices: np.array, *args, **kwargs
    ) -> np.array:
        return indices

    def get_batch_iterator(
        self,
        dataset,
        max_tokens=None,
        max_sentences=None,
        max_positions=None,
        ignore_invalid_inputs=False,
        required_batch_size_multiple=1,
        seed=1,
        num_shards=1,
        shard_id=0,
        num_workers=0,
        epoch=1,
        data_buffer_size=0,
        disable_iterator_cache=False,
        skip_remainder_batch=False,
        grouped_shuffling=False,
        update_epoch_batch_itr=False,
    ):
        """
        Get an iterator that yields batches of data from the given dataset.
        Args:
            dataset (~fairseq.data.FairseqDataset): dataset to batch
            max_tokens (int, optional): max number of tokens in each batch
                (default: None).
            max_sentences (int, optional): max number of sentences in each
                batch (default: None).
            max_positions (optional): max sentence length supported by the
                model (default: None).
            ignore_invalid_inputs (bool, optional): don't raise Exception for
                sentences that are too long (default: False).
            required_batch_size_multiple (int, optional): require batch size to
                be a multiple of N (default: 1).
            seed (int, optional): seed for random number generator for
                reproducibility (default: 1).
            num_shards (int, optional): shard the data iterator into N
                shards (default: 1).
            shard_id (int, optional): which shard of the data iterator to
                return (default: 0).
            num_workers (int, optional): how many subprocesses to use for data
                loading. 0 means the data will be loaded in the main process
                (default: 0).
            epoch (int, optional): the epoch to start the iterator from
                (default: 1).
            data_buffer_size (int, optional): number of batches to
                preload (default: 0).
            disable_iterator_cache (bool, optional): don't cache the
                EpochBatchIterator (ignores `FairseqTask::can_reuse_epoch_itr`)
                (default: False).
            skip_remainder_batch (bool, optional): if set, discard the last
                batch in each training epoch, as the last batch is often smaller than
                    local_batch_size * distributed_word_size (default: ``True``).
            grouped_shuffling (bool, optional): group batches with each groups
                containing num_shards batches and shuffle groups. Reduces difference
                between sequence lengths among workers for batches sorted by length.
            update_epoch_batch_itr (bool optional): if true then donot use the cached
                batch iterator for the epoch
            
        Returns:
            ~fairseq.iterators.EpochBatchIterator: a batched iterator over the
                given dataset split
        """
        if self.fine_tuning or not isinstance(dataset, MultiCorpusDataset):
            return super().get_batch_iterator(
                dataset,
                max_tokens=max_tokens,
                max_sentences=max_sentences,
                max_positions=max_positions,
                ignore_invalid_inputs=ignore_invalid_inputs,
                required_batch_size_multiple=required_batch_size_multiple,
                seed=seed,
                num_shards=num_shards,
                shard_id=shard_id,
                num_workers=num_workers,
                epoch=epoch,
                data_buffer_size=data_buffer_size,
                disable_iterator_cache=disable_iterator_cache,
                skip_remainder_batch=skip_remainder_batch,
                grouped_shuffling=grouped_shuffling,
                update_epoch_batch_itr=update_epoch_batch_itr,
            )
        
        can_reuse_epoch_itr = (
            not disable_iterator_cache
            and not update_epoch_batch_itr
            and self.can_reuse_epoch_itr(dataset)
        )
        if can_reuse_epoch_itr and dataset in self.dataset_to_epoch_iter:
            logger.debug("reusing EpochBatchIterator for epoch {}".format(epoch))
            return self.dataset_to_epoch_iter[dataset]

        assert isinstance(dataset, FairseqDataset)

        # initialize the dataset with the correct starting epoch
        dataset.set_epoch(epoch)

        # get indices ordered by example size
        with data_utils.numpy_seed(seed):
            indices = dataset.ordered_indices()

        # filter examples that are too large
        if max_positions is not None:
            indices = self.filter_indices_by_size(
                indices, dataset, max_positions, ignore_invalid_inputs
            )

        # create mini-batches with given size constraints
        batch_sampler = dataset.get_batch_sampler(
            indices,
            num_shards,
            seed,
            max_tokens=max_tokens,
            max_sentences=max_sentences,
            required_batch_size_multiple=required_batch_size_multiple,
            split_modality_batch=self.cfg.split_modality_batch,
        )

        # return a reusable, sharded iterator
        epoch_iter = iterators.EpochBatchIterator(
            dataset=dataset,
            collate_fn=dataset.collater,
            batch_sampler=batch_sampler,
            seed=seed,
            num_shards=num_shards,
            shard_id=shard_id,
            num_workers=num_workers,
            epoch=epoch,
            buffer_size=data_buffer_size,
            skip_remainder_batch=skip_remainder_batch,
            disable_shuffling=True,
            grouped_shuffling=grouped_shuffling,
        )

        if can_reuse_epoch_itr:
            self.dataset_to_epoch_iter[dataset] = epoch_iter

        return epoch_iter
    
    def build_generator(
        self,
        models,
        args,
        seq_gen_cls=None,
        extra_gen_cls_kwargs=None,
    ):
        """Build ED-CTC generator for finet-tuned ASR model"""
        from speechut.squence_generator import SequenceGenerator
        extra_gen_cls_kwargs = {
            "ctc_weight": self.cfg.ctc_weight,
            "lm_dict": Dictionary.load(os.path.join(self.cfg.data, self.cfg.lm_dict)),
            **extra_gen_cls_kwargs
        }
        return super().build_generator(
            models, args, seq_gen_cls=SequenceGenerator, extra_gen_cls_kwargs=extra_gen_cls_kwargs
        )

    @classmethod
    def _get_size_ratios(cls, ids: List[str], sizes: List[int], alpha: float = 1.0):
        """Size ratios for temperature-based sampling
        (https://arxiv.org/abs/1907.05019)"""
        _sizes = np.array(sizes)
        prob = _sizes / _sizes.sum()
        smoothed_prob = prob ** alpha
        smoothed_prob = smoothed_prob / smoothed_prob.sum()
        size_ratio = (smoothed_prob * _sizes.sum()) / _sizes

        o_str = str({_i: f"{prob[i]:.3f}" for i, _i in enumerate(ids)})
        logger.info(f"original sampling probability: {o_str}")
        p_str = str({_i: f"{smoothed_prob[i]:.3f}" for i, _i in enumerate(ids)})
        logger.info(f"balanced sampling probability: {p_str}")
        sr_str = str({_id: f"{size_ratio[i]:.3f}" for i, _id in enumerate(ids)})
        logger.info(f"balanced sampling size ratio: {sr_str}")
        return size_ratio.tolist()

    def resample_multi_modality_dataset(self, speech_dataset, sup_dataset, mono_datasets, paired_datasets, mono_splits, paired_splits, epoch=1, train=True):
        assert len(mono_datasets+paired_datasets) > 0, f"No text data loaded!"

        if len(mono_datasets) > 1 and self.cfg.text_sampling_alpha != 1.0:
            size_ratios = self._get_size_ratios(
                mono_splits, [len(s) for s in mono_datasets], alpha=self.cfg.text_sampling_alpha
            )
            mono_datasets = [
                ResamplingDataset(
                    d, size_ratio=r, seed=0, epoch=epoch, replace=(r >= 1.0)
                ) for d, r in zip(mono_datasets, size_ratios)
            ]
            
        if len(paired_datasets) > 1 and self.cfg.text_sampling_alpha != 1.0:
            size_ratios = self._get_size_ratios(
                paired_splits, [len(s) for s in paired_datasets], alpha=self.cfg.text_sampling_alpha
            )
            paired_datasets = [
                ResamplingDataset(
                    d, size_ratio=r, seed=0, epoch=epoch, replace=(r >= 1.0)
                ) for d, r in zip(paired_datasets, size_ratios)
            ]

        dataset_list = [speech_dataset, sup_dataset]
        for datasets in [mono_datasets, paired_datasets]:
            if len(datasets) > 1:
                dataset_list.append(ConcatDataset(datasets))
            elif len(datasets) == 1:
                dataset_list.append(datasets[0])
            else:
                dataset_list.append(None)

        ### match speech/text datasets according to modality
        dataset_dict = OrderedDict((name, d) for name, d in zip(["speech", "speech_sup", "text_mono", "text_paired"], dataset_list) if d is not None)
        max_positions_dict = {
            "speech": None,
            "speech_sup": None,
            "text_mono": (self.cfg.text_cfg.tokens_per_sample, self.cfg.text_cfg.tokens_per_sample),
            "text_paired": (self.cfg.text_cfg.tokens_per_sample, self.cfg.text_cfg.tokens_per_sample),
        }
        max_positions_dict = OrderedDict((name, max_positions_dict[name]) for name in dataset_dict.keys())
        max_tokens_ratios_dict = {
            "speech": 1.0,
            "speech_sup": 1.0,
            "text_mono": 1.0 / 320 / self.cfg.text_cfg.text_maxtokens_ratio,
            "text_paired": 1.0 / 320 / self.cfg.text_cfg.text_maxtokens_ratio,
        }
        max_tokens_ratios = [max_tokens_ratios_dict[name] for name in dataset_dict.keys()]
        dataset_lens = np.array([len(dataset) for dataset in dataset_dict.values()])
        dataset_avg_sample_lens = np.array([
            sum([dataset.num_tokens(i) for i in np.random.randint(low=0, high=len(dataset), size=10000)]) / 10000.0 
            for dataset in dataset_dict.values()
        ])

        if not "speech" in dataset_dict:
            distributions = [l / sum(dataset_lens) for l in dataset_lens]
        else:
            ## we just keep the batches of speech and non-speech the same, expand_coef is to ensure speech batches is less than others
            first_ratio = dataset_lens[0] / sum(dataset_lens)
            expand_coef = 1.2 if sup_dataset is None else 1.1 * sum(dataset_lens[0:2]) / dataset_lens[0]
            distributions = [expand_coef * max_tokens_ratios[i] * dataset_avg_sample_lens[0] / l for (i, l) in enumerate(dataset_avg_sample_lens)]
            distributions[0] = 1.0
            if sup_dataset is not None:
                distributions[1] = dataset_lens[1] / dataset_lens[0]
            distributions = [first_ratio * d for d in distributions]

        logging.info(f"Number samples of datasets is {dataset_lens}")
        logging.info(f"Avg sample length of datasets is {dataset_avg_sample_lens}")
        logging.info(f"Sampling distributions is {distributions}")
        logging.info(f"Maxtokens ratio is {max_tokens_ratios}")
        return dataset_dict, max_positions_dict, distributions, max_tokens_ratios

    def build_tokenizer(self, cfg=None):
        logger.info(f"tokenizer: {self.cfg.hubert_tokenizer}")
        if self.cfg.hubert_tokenizer != "none":
            return encoders.build_bpe(Namespace(**{"bpe": self.cfg.hubert_tokenizer, "sentencepiece_model": self.cfg.sp_path}))
        else:
            return None

    def load_char_bart_dataset(self, split):
        mono_dataset = data_utils.load_indexed_dataset(
            f"{self.cfg.text_cfg.text_data}/{split}",
            self.text_dictionary,
        )
        mono_dataset = StripTokenDataset(mono_dataset, self.text_dictionary.eos())
        mono_dataset = maybe_shorten_dataset(
            mono_dataset,
            split,
            self.cfg.text_cfg.shorten_data_split_list,
            self.cfg.text_cfg.shorten_method,
            self.cfg.text_cfg.tokens_per_sample - 2,
            self.cfg.text_cfg.seed,
        )
        logger.info("loaded {} samples from: {}".format(len(mono_dataset), mono_dataset))
        ### prepend bos and eos to dataset
        mono_dataset = PrependTokenDataset(mono_dataset, self.text_dictionary.bos())
        mono_dataset = AppendTokenDataset(mono_dataset, self.text_dictionary.eos())
        mask_whole_words = (
            get_whole_word_mask(None, self.text_dictionary)
            if self.cfg.text_cfg.mask_whole_words
            else None
        )
        lang=self.cfg.speech_tgt_lang
        mono_dataset = DenoisingDataset(
            mono_dataset,
            mono_dataset.sizes,
            self.text_dictionary,
            self.mask_idx,
            mask_whole_words,
            shuffle=self.cfg.text_cfg.shuffle_instance,
            seed=self.cfg.text_cfg.seed,
            args=self.cfg.text_cfg,
            tgt_lang_idx=_lang_token_index(self.text_dictionary, lang) if self.cfg.text_cfg.prepend_tgt_lang_tag else None,
        )
        
        return mono_dataset