File size: 19,688 Bytes
62e9ca6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
# --------------------------------------------------------
# The YiTrans End-to-End Speech Translation System for IWSLT 2022 Offline Shared Task (https://arxiv.org/abs/2206.05777)
# Github source: https://github.com/microsoft/SpeechT5/tree/main/YiTrans
# Copyright (c) 2022 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Based on fairseq code bases
# https://github.com/facebookresearch/fairseq
# --------------------------------------------------------

import logging
import contextlib
import pickle
from argparse import Namespace
from typing import Any, Optional

import torch
import torch.nn as nn
import torch.nn.functional as F
from dataclasses import dataclass, field
from fairseq import checkpoint_utils, tasks, utils
from fairseq.dataclass.utils import convert_namespace_to_omegaconf
from fairseq.models import BaseFairseqModel, FairseqEncoder, register_model
from fairseq.models.hubert.hubert_asr import HubertCtcConfig, HubertAsrConfig
from fairseq.tasks import FairseqTask
from fairseq.data.data_utils import lengths_to_padding_mask
from omegaconf import II, open_dict


logger = logging.getLogger(__name__)

@dataclass
class HubertSt2tCtcConfig(HubertCtcConfig):
    load_speech_only: bool = II("task.load_speech_only")
    ## for decoder overrides
    decoder_layerdrop: float = field(
        default=0.1,
        metadata={"help": "probability of dropping a decoder layer in hubert"},
    )
    add_decoder: bool = field(
        default=False,
        metadata={"help": "whether to add decoder for CE Loss on code"},
    )
    reuse_text_emb: bool = field(
        default=False,
        metadata={"help": "reuse text token embeddings instead of initialize randomly"},
    )
    freeze_decoder_updates: int = field(
        default=0,
        metadata={"help": "dont finetune hubert for this many updates"},
    )
    # share_enc_dec_embeddings: bool = field(
    #     default=False,
    #     metadata={"help": "share embeddings of (text encoder, text decoder)"},
    # )
    share_s2t_t2t_embeddings: bool = field(
        default=False,
        metadata={"help": "share embeddings of (speech2text(code), text2text)"},
    )
    share_ctc_decoder_embed: bool = field(
        default=False,
        metadata={"help": "share ctc and decoder embedding (only when share_decoder_input_output_embed is true)"},
    )
    enc_grad_mult: float = field(
        default=1.0,
        metadata={"help": "reset feature grad mult in hubert to this (only for st2t)"},
    )
    retain_dict_path: Optional[str] = field(
        default=None,
        metadata={"help": "delete embeddings according to this path"},
    )
    load_step2_model_from: Optional[str] = field(
        default=None,
        metadata={
            "help": "load step2 model from"
        },
    )

    # for other overrides
    adaptor_stride: int = field(
        default=2,
        metadata={"help": "adaptor stride"},
    )

@register_model("hubert_st2t", dataclass=HubertSt2tCtcConfig)
class HubertST2T(BaseFairseqModel):
    def __init__(self, cfg: HubertSt2tCtcConfig, w2v_encoder: BaseFairseqModel):
        super().__init__()
        self.cfg = cfg
        self.w2v_encoder = w2v_encoder
        self.num_updates = 0

        ### in case we need load hubert_step2 model
        if cfg.load_step2_model_from:
            logger.info(f"Loading hubert_step2 pretrained model for finetuning: {cfg.load_step2_model_from}")
            hubert_step2_states = self.w2v_encoder.w2v_model.load_checkpoint(cfg.load_step2_model_from)["model"]
            if cfg.retain_dict_path is not None:
                with open(cfg.retain_dict_path, "rb") as fp:
                    overlap_idxs = pickle.load(fp)
                if hubert_step2_states['w2v_encoder.w2v_model.decoder.output_projection.0.weight'].size(0) != len(overlap_idxs):
                    assert self.w2v_encoder.w2v_model.add_text_modality, "Mustc have text modality if retain dict path"
                    logger.info("Cut embedding to a smaller size according to retain dict")
                    hubert_step2_states['w2v_encoder.w2v_model.decoder.output_projection.0.weight'] = hubert_step2_states['w2v_encoder.w2v_model.decoder.output_projection.0.weight'][overlap_idxs]
                    hubert_step2_states["w2v_encoder.w2v_model.decoder.embed_tokens_list.0.weight"] = hubert_step2_states["w2v_encoder.w2v_model.decoder.embed_tokens_list.0.weight"][overlap_idxs]
                    if hubert_step2_states.get("w2v_encoder.w2v_model.text_encoder.embed_tokens.weight") is not None:
                        hubert_step2_states["w2v_encoder.w2v_model.text_encoder.embed_tokens.weight"] = hubert_step2_states["w2v_encoder.w2v_model.text_encoder.embed_tokens.weight"][overlap_idxs]
                else:
                    logger.info(f"cfg.load_step2_model_from matches the cut embedding dims {len(overlap_idxs)}, no cutting needs to do")
            if not self.cfg.load_speech_only and hubert_step2_states.get("w2v_encoder.w2v_model.text_encoder.embed_tokens.weight", None) is None:
                hubert_step2_states["w2v_encoder.w2v_model.text_encoder.embed_tokens.weight"] = hubert_step2_states["w2v_encoder.w2v_model.decoder.embed_tokens_list.0.weight"]
            try:
                self.load_state_dict(hubert_step2_states, strict=True)
            except Exception as e:
                logger.warn(e)
                self.load_state_dict(hubert_step2_states, strict=False)

    def upgrade_state_dict_named(self, state_dict, name):
        super().upgrade_state_dict_named(state_dict, name)
        return state_dict

    @classmethod
    def build_model(cls, cfg: HubertSt2tCtcConfig, task: FairseqTask):
        """Build a new model instance."""
        w2v_encoder = HubertEncoder(cfg, task.target_dictionary)
        return cls(cfg, w2v_encoder)

    def get_normalized_probs(self, net_output, log_probs, sample=None):
        """Get normalized probabilities (or log probs) from a net's output."""
        if "encoder_out" not in net_output:
            return self.w2v_encoder.get_normalized_probs_decoder(net_output, log_probs, sample)

        if "encoder_out_for_ctc" in net_output:
            logits = net_output["encoder_out_for_ctc"]
        else:
            logits = net_output["encoder_out"]
        
        if isinstance(logits, list):
            logits = logits[0]

        if log_probs:
            return utils.log_softmax(logits.float(), dim=-1)
        else:
            return utils.softmax(logits.float(), dim=-1)

    def get_logits(self, net_output):
        logits = net_output["encoder_out"]
        padding = net_output["encoder_padding_mask"]
        if padding is not None and padding.any():
            padding = padding.T
            logits[padding][..., 0] = 0
            logits[padding][..., 1:] = float("-inf")

        return logits

    def forward(self, **kwargs):
        x = self.w2v_encoder(**kwargs)
        return x

    @property
    def encoder(self):
        return self.w2v_encoder

    def reorder_encoder_out(self, encoder_out, new_order):
        return self.encoder.reorder_encoder_out(encoder_out, new_order)

    @property
    def decoder(self):
        return self.w2v_encoder.w2v_model.decoder
    
    def set_num_updates(self, num_updates):
        """Set the number of parameters updates."""
        super().set_num_updates(num_updates)
        self.num_updates = num_updates


class HubertEncoder(FairseqEncoder):
    def __init__(self, cfg: HubertAsrConfig, tgt_dict=None):
        self.apply_mask = cfg.apply_mask
        logger.info(f"self.apply_mask: {self.apply_mask}")

        arg_overrides = {
            "dropout": cfg.dropout,
            "activation_dropout": cfg.activation_dropout,
            "dropout_input": cfg.dropout_input,
            "attention_dropout": cfg.attention_dropout,
            "mask_length": cfg.mask_length,
            "mask_prob": cfg.mask_prob,
            "mask_selection": cfg.mask_selection,
            "mask_other": cfg.mask_other,
            "no_mask_overlap": cfg.no_mask_overlap,
            "mask_channel_length": cfg.mask_channel_length,
            "mask_channel_prob": cfg.mask_channel_prob,
            "mask_channel_selection": cfg.mask_channel_selection,
            "mask_channel_other": cfg.mask_channel_other,
            "no_mask_channel_overlap": cfg.no_mask_channel_overlap,
            "encoder_layerdrop": cfg.layerdrop,
            "decoder_layerdrop": cfg.decoder_layerdrop,
            "feature_grad_mult": cfg.feature_grad_mult,
            "decoder_dict_size": len(tgt_dict) if cfg.add_decoder else -1,
            "share_decoder_input_output_embed": cfg.share_decoder_input_output_embed,
            "load_pretrained_w2v_from": cfg.load_pretrained_w2v_from,
            "load_pretrained_mbart_from": None,
            "adaptor_stride": cfg.adaptor_stride,
            "share_speech_text_embeddings": cfg.share_speech_text_embeddings,
        }

        if cfg.no_pretrained_weights:
            arg_overrides["use_rel_pos_enc"] = cfg.use_rel_pos_enc
            arg_overrides["encoder_layers"] = cfg.encoder_layers
            arg_overrides["add_text_encoder"] = cfg.add_text_encoder
            arg_overrides["share_all_embeddings"] = cfg.share_all_embeddings
            arg_overrides["add_adaptor"] = cfg.add_adaptor

        if cfg.w2v_args is None:
            state = checkpoint_utils.load_checkpoint_to_cpu(cfg.w2v_path, arg_overrides)
            w2v_args = state.get("cfg", None)
            if w2v_args is None:
                w2v_args = convert_namespace_to_omegaconf(state["args"])
            cfg.w2v_args = w2v_args
        else:
            state = None
            w2v_args = cfg.w2v_args
            if isinstance(w2v_args, Namespace):
                cfg.w2v_args = w2v_args = convert_namespace_to_omegaconf(w2v_args)

        ## in speech_text_joint_to_text, data is loaded by soundfile, which returns without normalization
        self.need_preprocess = w2v_args.task.normalize
        logger.warn("We need normalize the input wavform from the src_tokens")

        if cfg.normalize != w2v_args.task.normalize:
            logger.warn(
            "Fine-tuning works best when data normalization is the same. "
            "Please check that --normalize is set or unset for "
            "both pre-training and here"
        )
        
        if not "share_speech_text_embeddings" in w2v_args.model:
            with open_dict(w2v_args.model): 
                w2v_args.model.share_speech_text_embedding = cfg.share_speech_text_embeddings
        logger.info(f"share_speech_text_embeddings: {(getattr(w2v_args.model, 'share_speech_text_embeddings', False))}")
        w2v_args.task.data = cfg.data
        w2v_args.task.add_decoder = cfg.add_decoder
        assert w2v_args.model._name == "hubert"

        task = tasks.setup_task(w2v_args.task)
        if state is not None and "task_state" in state:
            # This will load the stored "dictionaries" object
            task.load_state_dict(state["task_state"])
        model = task.build_model(w2v_args.model)

        ### modify the embed_tokens and output_projection of decoder
        if state is not None and not cfg.no_pretrained_weights:
            model_states = self.modify_states(state['model'], cfg.retain_dict_path, cfg.reuse_text_emb)
            try:
                model.load_state_dict(model_states, strict=True)
            except Exception as e:
                logger.warn(e)
                model.load_state_dict(model_states, strict=False)

        ### in case we need load mbart
        if cfg.no_pretrained_weights and cfg.load_pretrained_mbart_from:
            logger.info("Loading mbart ...")
            mbart_state = model.load_checkpoint(cfg.load_pretrained_mbart_from)
            mbart_state["model"] = self.modify_states(mbart_state["model"], cfg.retain_dict_path, cfg.reuse_text_emb, is_mbart=True)
            model.text_encoder = model.load_pretrained_component_from_model(
                component=model.text_encoder, state=mbart_state
            )
            model.decoder = model.load_pretrained_component_from_model(
                component=model.decoder, state=mbart_state
            )

        model.remove_pretraining_modules(step2=(not cfg.load_speech_only))
        # model.remove_pretraining_modules()

        super().__init__(task.source_dictionary)

        d = w2v_args.model.encoder_embed_dim

        self.w2v_model = model

        self.final_dropout = nn.Dropout(cfg.final_dropout)
        self.freeze_finetune_updates = cfg.freeze_finetune_updates
        self.freeze_decoder_updates = cfg.freeze_decoder_updates
        self.num_updates = 0
        self.enc_grad_mult = cfg.enc_grad_mult
    
    def modify_states(self, model_states, retain_dict_path=None, reuse_text_emb=False, is_mbart=False):
        if retain_dict_path is not None:
            logger.info("Cut embedding to a smaller size according to retain dict")
            with open(retain_dict_path, "rb") as fp:
                overlap_idxs = pickle.load(fp)
            if is_mbart:
                model_states["decoder.embed_tokens_list.1.weight"] = model_states["decoder.embed_tokens.weight"][overlap_idxs]
                model_states["decoder.output_projection.1.weight"] = model_states["decoder.output_projection.weight"][overlap_idxs]
                model_states["decoder.embed_tokens.weight"] = model_states["decoder.embed_tokens.weight"][overlap_idxs]
                model_states["decoder.output_projection.weight"] = model_states["decoder.output_projection.weight"][overlap_idxs]
                model_states["encoder.embed_tokens.weight"] = model_states["encoder.embed_tokens.weight"][overlap_idxs]
            else:
                model_states['decoder.output_projection.1.weight'] = model_states['decoder.output_projection.1.weight'][overlap_idxs]
                model_states["decoder.embed_tokens_list.1.weight"] = model_states["decoder.embed_tokens_list.1.weight"][overlap_idxs]
                model_states["text_encoder.embed_tokens.weight"] = model_states["text_encoder.embed_tokens.weight"][overlap_idxs]
        if reuse_text_emb:
            logger.info("Loading decoder.embed_tokens_list.0 <-- decoder.embed_tokens_list.1")
            model_states["decoder.embed_tokens_list.0.weight"] = model_states["decoder.embed_tokens_list.1.weight"]
            model_states["decoder.output_projection.0.weight"] = model_states["decoder.output_projection.1.weight"]
            del model_states["decoder.embed_tokens_list.1.weight"]
            del model_states["decoder.output_projection.1.weight"]
        return model_states
    
    def set_num_updates(self, num_updates):
        """Set the number of parameters updates."""
        super().set_num_updates(num_updates)
        self.num_updates = num_updates

    def forward(self, src_tokens=None, src_lengths=None, src_txt_tokens=None, src_txt_lengths=None, prev_output_tokens=None, tbc=True, **kwargs):
        padding_mask = lengths_to_padding_mask(src_lengths)
        if self.need_preprocess:
            src_tokens = torch.stack([F.layer_norm(wav, wav.shape) for wav in src_tokens])
            src_tokens[padding_mask] = 0.0

        ft = self.freeze_finetune_updates <= self.num_updates
        w2v_args = {
            "source": src_tokens,
            "padding_mask": padding_mask,
            "mask": self.apply_mask and self.training,
            "prev_output_tokens": prev_output_tokens,
            "ft": ft,
            "enc_grad_mult": self.enc_grad_mult,
        }

        if self.freeze_decoder_updates <= self.num_updates:
            self.w2v_model.add_decoder = True
        else:
            self.w2v_model.add_decoder = False
        
        x, padding_mask, decoder_out = self.w2v_model.extract_features(**w2v_args)
        
        if tbc:
            # B x T x C -> T x B x C
            x = x.transpose(0, 1)

        x = self.final_dropout(x)

        if src_txt_tokens is not None:
            w2v_args_text = {
                "src_tokens": src_txt_tokens,
                "src_lengths": src_txt_lengths,
                "prev_output_tokens": prev_output_tokens,
            }

            decoder_output_text = self.w2v_model(**w2v_args_text)
            decoder_out = (torch.cat([decoder_out[0], decoder_output_text['decoder_out'][0]], dim=0), {"attn_cost": None})

        return decoder_out

    def get_normalized_probs_decoder(self, net_output, log_probs, sample=None):
        # net_output['encoder_out'] is a (B, T, D) tensor
        return self.w2v_model.get_normalized_probs(net_output, log_probs, sample)

    def reorder_encoder_out(self, encoder_out, new_order):
        if encoder_out["encoder_out"] is not None:
            if isinstance(encoder_out["encoder_out"], list):
                encoder_out["encoder_out"] = (
                    [] if len(encoder_out["encoder_out"]) == 0
                    else [x.index_select(1, new_order) for x in encoder_out["encoder_out"]]
                )
            else:
                encoder_out["encoder_out"] = encoder_out[
                    "encoder_out"
                ].index_select(1, new_order)
        if encoder_out["encoder_padding_mask"] is not None:
            if isinstance(encoder_out["encoder_padding_mask"], list):
                encoder_out["encoder_padding_mask"] = (
                    [] if len(encoder_out["encoder_padding_mask"]) == 0
                    else [x.index_select(0, new_order) for x in encoder_out["encoder_padding_mask"]]
                )
            else:
                encoder_out["encoder_padding_mask"] = encoder_out[
                    "encoder_padding_mask"
                ].index_select(0, new_order)
        if "decoder_out" in encoder_out and encoder_out["decoder_out"] is not None:
            if isinstance(encoder_out["decoder_out"], list):
                encoder_out["decoder_out"] = (
                    [] if len(encoder_out["decoder_out"]) == 0
                    else [x.index_select(0, new_order) for x in encoder_out["decoder_out"]]
                )
            else:
                encoder_out["decoder_out"] = encoder_out[
                    "decoder_out"
                ].index_select(0, new_order)

        return encoder_out

    def forward_torchscript(self, net_input):
        """A TorchScript-compatible version of forward.

        Encoders which use additional arguments may want to override
        this method for TorchScript compatibility.
        """
        padding_mask = lengths_to_padding_mask(net_input["src_lengths"])
        src_tokens = net_input["src_tokens"]
        if self.need_preprocess:
            src_tokens = torch.stack([F.layer_norm(wav, wav.shape) for wav in src_tokens])
            src_tokens[padding_mask] = 0.0

        _net_input = {
            "source": src_tokens,
            "padding_mask": padding_mask,
        }

        encoder_out = self.w2v_model.forward_torchscript(_net_input)
        
        return encoder_out

    def max_positions(self):
        """Maximum input length supported by the encoder."""
        return None

    def upgrade_state_dict_named(self, state_dict, name):
        return state_dict


def Embedding(num_embeddings, embedding_dim, padding_idx):
    m = nn.Embedding(num_embeddings, embedding_dim, padding_idx=padding_idx)
    nn.init.normal_(m.weight, mean=0, std=embedding_dim ** -0.5)
    nn.init.constant_(m.weight[padding_idx], 0)
    return m


def Linear(in_features, out_features, bias=True):
    m = nn.Linear(in_features, out_features, bias)
    nn.init.xavier_uniform_(m.weight)
    if bias:
        nn.init.constant_(m.bias, 0.0)
    return m