Spaces:
Runtime error
Runtime error
File size: 19,688 Bytes
62e9ca6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 |
# --------------------------------------------------------
# The YiTrans End-to-End Speech Translation System for IWSLT 2022 Offline Shared Task (https://arxiv.org/abs/2206.05777)
# Github source: https://github.com/microsoft/SpeechT5/tree/main/YiTrans
# Copyright (c) 2022 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Based on fairseq code bases
# https://github.com/facebookresearch/fairseq
# --------------------------------------------------------
import logging
import contextlib
import pickle
from argparse import Namespace
from typing import Any, Optional
import torch
import torch.nn as nn
import torch.nn.functional as F
from dataclasses import dataclass, field
from fairseq import checkpoint_utils, tasks, utils
from fairseq.dataclass.utils import convert_namespace_to_omegaconf
from fairseq.models import BaseFairseqModel, FairseqEncoder, register_model
from fairseq.models.hubert.hubert_asr import HubertCtcConfig, HubertAsrConfig
from fairseq.tasks import FairseqTask
from fairseq.data.data_utils import lengths_to_padding_mask
from omegaconf import II, open_dict
logger = logging.getLogger(__name__)
@dataclass
class HubertSt2tCtcConfig(HubertCtcConfig):
load_speech_only: bool = II("task.load_speech_only")
## for decoder overrides
decoder_layerdrop: float = field(
default=0.1,
metadata={"help": "probability of dropping a decoder layer in hubert"},
)
add_decoder: bool = field(
default=False,
metadata={"help": "whether to add decoder for CE Loss on code"},
)
reuse_text_emb: bool = field(
default=False,
metadata={"help": "reuse text token embeddings instead of initialize randomly"},
)
freeze_decoder_updates: int = field(
default=0,
metadata={"help": "dont finetune hubert for this many updates"},
)
# share_enc_dec_embeddings: bool = field(
# default=False,
# metadata={"help": "share embeddings of (text encoder, text decoder)"},
# )
share_s2t_t2t_embeddings: bool = field(
default=False,
metadata={"help": "share embeddings of (speech2text(code), text2text)"},
)
share_ctc_decoder_embed: bool = field(
default=False,
metadata={"help": "share ctc and decoder embedding (only when share_decoder_input_output_embed is true)"},
)
enc_grad_mult: float = field(
default=1.0,
metadata={"help": "reset feature grad mult in hubert to this (only for st2t)"},
)
retain_dict_path: Optional[str] = field(
default=None,
metadata={"help": "delete embeddings according to this path"},
)
load_step2_model_from: Optional[str] = field(
default=None,
metadata={
"help": "load step2 model from"
},
)
# for other overrides
adaptor_stride: int = field(
default=2,
metadata={"help": "adaptor stride"},
)
@register_model("hubert_st2t", dataclass=HubertSt2tCtcConfig)
class HubertST2T(BaseFairseqModel):
def __init__(self, cfg: HubertSt2tCtcConfig, w2v_encoder: BaseFairseqModel):
super().__init__()
self.cfg = cfg
self.w2v_encoder = w2v_encoder
self.num_updates = 0
### in case we need load hubert_step2 model
if cfg.load_step2_model_from:
logger.info(f"Loading hubert_step2 pretrained model for finetuning: {cfg.load_step2_model_from}")
hubert_step2_states = self.w2v_encoder.w2v_model.load_checkpoint(cfg.load_step2_model_from)["model"]
if cfg.retain_dict_path is not None:
with open(cfg.retain_dict_path, "rb") as fp:
overlap_idxs = pickle.load(fp)
if hubert_step2_states['w2v_encoder.w2v_model.decoder.output_projection.0.weight'].size(0) != len(overlap_idxs):
assert self.w2v_encoder.w2v_model.add_text_modality, "Mustc have text modality if retain dict path"
logger.info("Cut embedding to a smaller size according to retain dict")
hubert_step2_states['w2v_encoder.w2v_model.decoder.output_projection.0.weight'] = hubert_step2_states['w2v_encoder.w2v_model.decoder.output_projection.0.weight'][overlap_idxs]
hubert_step2_states["w2v_encoder.w2v_model.decoder.embed_tokens_list.0.weight"] = hubert_step2_states["w2v_encoder.w2v_model.decoder.embed_tokens_list.0.weight"][overlap_idxs]
if hubert_step2_states.get("w2v_encoder.w2v_model.text_encoder.embed_tokens.weight") is not None:
hubert_step2_states["w2v_encoder.w2v_model.text_encoder.embed_tokens.weight"] = hubert_step2_states["w2v_encoder.w2v_model.text_encoder.embed_tokens.weight"][overlap_idxs]
else:
logger.info(f"cfg.load_step2_model_from matches the cut embedding dims {len(overlap_idxs)}, no cutting needs to do")
if not self.cfg.load_speech_only and hubert_step2_states.get("w2v_encoder.w2v_model.text_encoder.embed_tokens.weight", None) is None:
hubert_step2_states["w2v_encoder.w2v_model.text_encoder.embed_tokens.weight"] = hubert_step2_states["w2v_encoder.w2v_model.decoder.embed_tokens_list.0.weight"]
try:
self.load_state_dict(hubert_step2_states, strict=True)
except Exception as e:
logger.warn(e)
self.load_state_dict(hubert_step2_states, strict=False)
def upgrade_state_dict_named(self, state_dict, name):
super().upgrade_state_dict_named(state_dict, name)
return state_dict
@classmethod
def build_model(cls, cfg: HubertSt2tCtcConfig, task: FairseqTask):
"""Build a new model instance."""
w2v_encoder = HubertEncoder(cfg, task.target_dictionary)
return cls(cfg, w2v_encoder)
def get_normalized_probs(self, net_output, log_probs, sample=None):
"""Get normalized probabilities (or log probs) from a net's output."""
if "encoder_out" not in net_output:
return self.w2v_encoder.get_normalized_probs_decoder(net_output, log_probs, sample)
if "encoder_out_for_ctc" in net_output:
logits = net_output["encoder_out_for_ctc"]
else:
logits = net_output["encoder_out"]
if isinstance(logits, list):
logits = logits[0]
if log_probs:
return utils.log_softmax(logits.float(), dim=-1)
else:
return utils.softmax(logits.float(), dim=-1)
def get_logits(self, net_output):
logits = net_output["encoder_out"]
padding = net_output["encoder_padding_mask"]
if padding is not None and padding.any():
padding = padding.T
logits[padding][..., 0] = 0
logits[padding][..., 1:] = float("-inf")
return logits
def forward(self, **kwargs):
x = self.w2v_encoder(**kwargs)
return x
@property
def encoder(self):
return self.w2v_encoder
def reorder_encoder_out(self, encoder_out, new_order):
return self.encoder.reorder_encoder_out(encoder_out, new_order)
@property
def decoder(self):
return self.w2v_encoder.w2v_model.decoder
def set_num_updates(self, num_updates):
"""Set the number of parameters updates."""
super().set_num_updates(num_updates)
self.num_updates = num_updates
class HubertEncoder(FairseqEncoder):
def __init__(self, cfg: HubertAsrConfig, tgt_dict=None):
self.apply_mask = cfg.apply_mask
logger.info(f"self.apply_mask: {self.apply_mask}")
arg_overrides = {
"dropout": cfg.dropout,
"activation_dropout": cfg.activation_dropout,
"dropout_input": cfg.dropout_input,
"attention_dropout": cfg.attention_dropout,
"mask_length": cfg.mask_length,
"mask_prob": cfg.mask_prob,
"mask_selection": cfg.mask_selection,
"mask_other": cfg.mask_other,
"no_mask_overlap": cfg.no_mask_overlap,
"mask_channel_length": cfg.mask_channel_length,
"mask_channel_prob": cfg.mask_channel_prob,
"mask_channel_selection": cfg.mask_channel_selection,
"mask_channel_other": cfg.mask_channel_other,
"no_mask_channel_overlap": cfg.no_mask_channel_overlap,
"encoder_layerdrop": cfg.layerdrop,
"decoder_layerdrop": cfg.decoder_layerdrop,
"feature_grad_mult": cfg.feature_grad_mult,
"decoder_dict_size": len(tgt_dict) if cfg.add_decoder else -1,
"share_decoder_input_output_embed": cfg.share_decoder_input_output_embed,
"load_pretrained_w2v_from": cfg.load_pretrained_w2v_from,
"load_pretrained_mbart_from": None,
"adaptor_stride": cfg.adaptor_stride,
"share_speech_text_embeddings": cfg.share_speech_text_embeddings,
}
if cfg.no_pretrained_weights:
arg_overrides["use_rel_pos_enc"] = cfg.use_rel_pos_enc
arg_overrides["encoder_layers"] = cfg.encoder_layers
arg_overrides["add_text_encoder"] = cfg.add_text_encoder
arg_overrides["share_all_embeddings"] = cfg.share_all_embeddings
arg_overrides["add_adaptor"] = cfg.add_adaptor
if cfg.w2v_args is None:
state = checkpoint_utils.load_checkpoint_to_cpu(cfg.w2v_path, arg_overrides)
w2v_args = state.get("cfg", None)
if w2v_args is None:
w2v_args = convert_namespace_to_omegaconf(state["args"])
cfg.w2v_args = w2v_args
else:
state = None
w2v_args = cfg.w2v_args
if isinstance(w2v_args, Namespace):
cfg.w2v_args = w2v_args = convert_namespace_to_omegaconf(w2v_args)
## in speech_text_joint_to_text, data is loaded by soundfile, which returns without normalization
self.need_preprocess = w2v_args.task.normalize
logger.warn("We need normalize the input wavform from the src_tokens")
if cfg.normalize != w2v_args.task.normalize:
logger.warn(
"Fine-tuning works best when data normalization is the same. "
"Please check that --normalize is set or unset for "
"both pre-training and here"
)
if not "share_speech_text_embeddings" in w2v_args.model:
with open_dict(w2v_args.model):
w2v_args.model.share_speech_text_embedding = cfg.share_speech_text_embeddings
logger.info(f"share_speech_text_embeddings: {(getattr(w2v_args.model, 'share_speech_text_embeddings', False))}")
w2v_args.task.data = cfg.data
w2v_args.task.add_decoder = cfg.add_decoder
assert w2v_args.model._name == "hubert"
task = tasks.setup_task(w2v_args.task)
if state is not None and "task_state" in state:
# This will load the stored "dictionaries" object
task.load_state_dict(state["task_state"])
model = task.build_model(w2v_args.model)
### modify the embed_tokens and output_projection of decoder
if state is not None and not cfg.no_pretrained_weights:
model_states = self.modify_states(state['model'], cfg.retain_dict_path, cfg.reuse_text_emb)
try:
model.load_state_dict(model_states, strict=True)
except Exception as e:
logger.warn(e)
model.load_state_dict(model_states, strict=False)
### in case we need load mbart
if cfg.no_pretrained_weights and cfg.load_pretrained_mbart_from:
logger.info("Loading mbart ...")
mbart_state = model.load_checkpoint(cfg.load_pretrained_mbart_from)
mbart_state["model"] = self.modify_states(mbart_state["model"], cfg.retain_dict_path, cfg.reuse_text_emb, is_mbart=True)
model.text_encoder = model.load_pretrained_component_from_model(
component=model.text_encoder, state=mbart_state
)
model.decoder = model.load_pretrained_component_from_model(
component=model.decoder, state=mbart_state
)
model.remove_pretraining_modules(step2=(not cfg.load_speech_only))
# model.remove_pretraining_modules()
super().__init__(task.source_dictionary)
d = w2v_args.model.encoder_embed_dim
self.w2v_model = model
self.final_dropout = nn.Dropout(cfg.final_dropout)
self.freeze_finetune_updates = cfg.freeze_finetune_updates
self.freeze_decoder_updates = cfg.freeze_decoder_updates
self.num_updates = 0
self.enc_grad_mult = cfg.enc_grad_mult
def modify_states(self, model_states, retain_dict_path=None, reuse_text_emb=False, is_mbart=False):
if retain_dict_path is not None:
logger.info("Cut embedding to a smaller size according to retain dict")
with open(retain_dict_path, "rb") as fp:
overlap_idxs = pickle.load(fp)
if is_mbart:
model_states["decoder.embed_tokens_list.1.weight"] = model_states["decoder.embed_tokens.weight"][overlap_idxs]
model_states["decoder.output_projection.1.weight"] = model_states["decoder.output_projection.weight"][overlap_idxs]
model_states["decoder.embed_tokens.weight"] = model_states["decoder.embed_tokens.weight"][overlap_idxs]
model_states["decoder.output_projection.weight"] = model_states["decoder.output_projection.weight"][overlap_idxs]
model_states["encoder.embed_tokens.weight"] = model_states["encoder.embed_tokens.weight"][overlap_idxs]
else:
model_states['decoder.output_projection.1.weight'] = model_states['decoder.output_projection.1.weight'][overlap_idxs]
model_states["decoder.embed_tokens_list.1.weight"] = model_states["decoder.embed_tokens_list.1.weight"][overlap_idxs]
model_states["text_encoder.embed_tokens.weight"] = model_states["text_encoder.embed_tokens.weight"][overlap_idxs]
if reuse_text_emb:
logger.info("Loading decoder.embed_tokens_list.0 <-- decoder.embed_tokens_list.1")
model_states["decoder.embed_tokens_list.0.weight"] = model_states["decoder.embed_tokens_list.1.weight"]
model_states["decoder.output_projection.0.weight"] = model_states["decoder.output_projection.1.weight"]
del model_states["decoder.embed_tokens_list.1.weight"]
del model_states["decoder.output_projection.1.weight"]
return model_states
def set_num_updates(self, num_updates):
"""Set the number of parameters updates."""
super().set_num_updates(num_updates)
self.num_updates = num_updates
def forward(self, src_tokens=None, src_lengths=None, src_txt_tokens=None, src_txt_lengths=None, prev_output_tokens=None, tbc=True, **kwargs):
padding_mask = lengths_to_padding_mask(src_lengths)
if self.need_preprocess:
src_tokens = torch.stack([F.layer_norm(wav, wav.shape) for wav in src_tokens])
src_tokens[padding_mask] = 0.0
ft = self.freeze_finetune_updates <= self.num_updates
w2v_args = {
"source": src_tokens,
"padding_mask": padding_mask,
"mask": self.apply_mask and self.training,
"prev_output_tokens": prev_output_tokens,
"ft": ft,
"enc_grad_mult": self.enc_grad_mult,
}
if self.freeze_decoder_updates <= self.num_updates:
self.w2v_model.add_decoder = True
else:
self.w2v_model.add_decoder = False
x, padding_mask, decoder_out = self.w2v_model.extract_features(**w2v_args)
if tbc:
# B x T x C -> T x B x C
x = x.transpose(0, 1)
x = self.final_dropout(x)
if src_txt_tokens is not None:
w2v_args_text = {
"src_tokens": src_txt_tokens,
"src_lengths": src_txt_lengths,
"prev_output_tokens": prev_output_tokens,
}
decoder_output_text = self.w2v_model(**w2v_args_text)
decoder_out = (torch.cat([decoder_out[0], decoder_output_text['decoder_out'][0]], dim=0), {"attn_cost": None})
return decoder_out
def get_normalized_probs_decoder(self, net_output, log_probs, sample=None):
# net_output['encoder_out'] is a (B, T, D) tensor
return self.w2v_model.get_normalized_probs(net_output, log_probs, sample)
def reorder_encoder_out(self, encoder_out, new_order):
if encoder_out["encoder_out"] is not None:
if isinstance(encoder_out["encoder_out"], list):
encoder_out["encoder_out"] = (
[] if len(encoder_out["encoder_out"]) == 0
else [x.index_select(1, new_order) for x in encoder_out["encoder_out"]]
)
else:
encoder_out["encoder_out"] = encoder_out[
"encoder_out"
].index_select(1, new_order)
if encoder_out["encoder_padding_mask"] is not None:
if isinstance(encoder_out["encoder_padding_mask"], list):
encoder_out["encoder_padding_mask"] = (
[] if len(encoder_out["encoder_padding_mask"]) == 0
else [x.index_select(0, new_order) for x in encoder_out["encoder_padding_mask"]]
)
else:
encoder_out["encoder_padding_mask"] = encoder_out[
"encoder_padding_mask"
].index_select(0, new_order)
if "decoder_out" in encoder_out and encoder_out["decoder_out"] is not None:
if isinstance(encoder_out["decoder_out"], list):
encoder_out["decoder_out"] = (
[] if len(encoder_out["decoder_out"]) == 0
else [x.index_select(0, new_order) for x in encoder_out["decoder_out"]]
)
else:
encoder_out["decoder_out"] = encoder_out[
"decoder_out"
].index_select(0, new_order)
return encoder_out
def forward_torchscript(self, net_input):
"""A TorchScript-compatible version of forward.
Encoders which use additional arguments may want to override
this method for TorchScript compatibility.
"""
padding_mask = lengths_to_padding_mask(net_input["src_lengths"])
src_tokens = net_input["src_tokens"]
if self.need_preprocess:
src_tokens = torch.stack([F.layer_norm(wav, wav.shape) for wav in src_tokens])
src_tokens[padding_mask] = 0.0
_net_input = {
"source": src_tokens,
"padding_mask": padding_mask,
}
encoder_out = self.w2v_model.forward_torchscript(_net_input)
return encoder_out
def max_positions(self):
"""Maximum input length supported by the encoder."""
return None
def upgrade_state_dict_named(self, state_dict, name):
return state_dict
def Embedding(num_embeddings, embedding_dim, padding_idx):
m = nn.Embedding(num_embeddings, embedding_dim, padding_idx=padding_idx)
nn.init.normal_(m.weight, mean=0, std=embedding_dim ** -0.5)
nn.init.constant_(m.weight[padding_idx], 0)
return m
def Linear(in_features, out_features, bias=True):
m = nn.Linear(in_features, out_features, bias)
nn.init.xavier_uniform_(m.weight)
if bias:
nn.init.constant_(m.bias, 0.0)
return m
|