File size: 28,635 Bytes
62e9ca6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
# --------------------------------------------------------
# The YiTrans End-to-End Speech Translation System for IWSLT 2022 Offline Shared Task (https://arxiv.org/abs/2206.05777)
# Github source: https://github.com/microsoft/SpeechT5/tree/main/YiTrans
# Copyright (c) 2022 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Based on fairseq code bases
# https://github.com/facebookresearch/fairseq
# --------------------------------------------------------

import logging
import contextlib
from dataclasses import dataclass, field
from typing import Dict, List, Optional, Tuple, Union
from collections import OrderedDict

import copy
import torch
from omegaconf import II

from fairseq import checkpoint_utils
from fairseq.data.dictionary import Dictionary
from fairseq.dataclass import ChoiceEnum
from fairseq.models import register_model, FairseqDecoder
from fairseq.models.transformer import (
    TransformerEncoderBase,
    TransformerConfig,
)
from fairseq.models.speech_to_text import Conv1dAdaptor
from fairseq.models.transformer import Embedding
from fairseq.file_io import PathManager
from torch import Tensor
from fairseq.models.wav2vec.wav2vec2 import ConvFeatureExtractionModel
from fairseq.modules import GradMultiply

from fairseq.models.hubert import HubertConfig, HubertModel

from fairseq.models.wav2vec.wav2vec2 import TransformerEncoder as W2vTransformerEncoder
from yitrans_iwslt22.modules.w2v_encoder import TransformerEncoder
from yitrans_iwslt22.modules.transformer_decoder import TransformerDecoderScriptable
from yitrans_iwslt22.modules.multimodal_transformer_decoder import MultimodalTransformerDecoder
from yitrans_iwslt22.tasks.iwslt_joint_pretraining import (
    JointPretrainingConfig,
    JointPretrainingTask,
)

logger = logging.getLogger(__name__)

EXTRACTOR_MODE_CHOICES = ChoiceEnum(["default", "layer_norm"])
MASKING_DISTRIBUTION_CHOICES = ChoiceEnum(["static", "uniform", "normal", "poisson"])


@dataclass
class JointEDConfig(HubertConfig):
    use_rel_pos_enc: bool = field(
        default=False,
        metadata={"help": "whether to use relative positional encoding"},
    )
    
    # decoder
    decoder_layers: int = field(
        default=6, metadata={"help": "num decoder layers in the transformer"}
    )
    decoder_embed_dim: int = field(
        default=768, metadata={"help": "decoder embedding dimension"}
    )
    decoder_ffn_embed_dim: int = field(
        default=3072, metadata={"help": "decoder embedding dimension for FFN"}
    )
    decoder_attention_heads: int = field(
        default=12, metadata={"help": "num decoder attention heads"}
    )
    decoder_normalize_before: bool = field(
        default=False,
        metadata={"help": "apply layernorm before each decoder block"},
    )
    layernorm_embedding: bool = field(
        default=False,
        metadata={"help": "apply layernorm to embedding for decoder"},
    )
    decoder_layerdrop: float = field(
        default=0.1,
        metadata={"help": "probability of dropping a tarnsformer layer"},
    )
    share_decoder_input_output_embed: bool = field(
        default=False,
        metadata={"help": "share decoder input and output embeddings"},
    )
    share_enc_dec_embeddings: bool = field(
        default=False,
        metadata={"help": "share embeddings of (text encoder, text decoder)"},
    )
    share_s2t_t2t_embeddings: bool = field(
        default=False,
        metadata={"help": "share embeddings of (speech2text(code), text2text)"},
    )
    decoder_output_dim: int = field(
        default=768, metadata={"help": "decoder output dimension"}
    )
    max_target_positions: int = field(
        default=3000, metadata={"help": "max target position"}
    )
    no_scale_embedding: bool = field(
        default=False,
        metadata={"help": "not scale embedding"},
    )
    adaptive_input: bool = field(
        default=False,
        metadata={"help": "adaptive input"},
    )
    quant_noise_pq: int = field(
        default=0, metadata={"help": "quant noise pq"}
    )
    decoder_learned_pos: bool = field(
        default=False,
        metadata={"help": "decoder learnable positional embedding"},
    )
    no_token_positional_embeddings: bool = field(
        default=False,
        metadata={"help": "no token positional embeddings"},
    )
    add_text_modality: bool = field(
        default=-False,
        metadata={"help": "add text modality, mainly used in pretrainnig"},
    )
    add_text_encoder: bool = field(
        default=False,
        metadata={"help": "add_text_encoder"},
    )
    share_text_encoder: bool = field(
        default=True,
        metadata={"help": "share text encoder so that speech branch go through it"},
    )
    split_attention: bool = field(
        default=False,
        metadata={"help": "use shared but split encoders"},
    )
    add_adaptor: bool = field(
        default=False,
        metadata={"help": "add adaptor and text encoder on the top of speech encoder"},
    )
    adaptor_n_layers: int = field(
        default=3,
        metadata={"help": "number of layers for adaptor"},
    )
    adaptor_kernel_size: int = field(
        default=3,
        metadata={"help": "kernel size for adaptor"},
    )
    adaptor_stride: int = field(
        default=2,
        metadata={"help": "adaptor stride"},
    )
    adaptor_layernorm: bool = field(
        default=False,
        metadata={"help": "adaptor layernorm"},
    )
    # Finetune related
    decoder_dict_size: int = field(
        default=-1,
        metadata={"help": "decoder dictionary dimension"},
    )

    # text encoder related, TransformerConfig is used in bart but we only use its enconder
    text_transformer: TransformerConfig = TransformerConfig()

    # other
    checkpoint_activations: bool = field(
        default=False, metadata={"help": "recompute activations and save memory for extra compute"}
    )

    # Load pre-train model
    load_pretrained_mbart_from: Optional[str] = field(
        default=None,
        metadata={
            "help": "model to take text encoder decoder weights from (for initialization)"
        },
    )
    load_pretrained_w2v_from: Optional[str] = field(
        default=None,
        metadata={
            "help": "model to take speech encoder weights from (for initialization)"
        },
    )

    # FP16 optimization
    required_seq_len_multiple: int = field(
        default=1,
        metadata={
            "help": "pad the input to encoder such that the sequence length is divisible by multiple"
        },
    )
    crop_seq_to_multiple: int = field(
        default=1,
        metadata={
            "help": "crop convolutional feature extractor output such that the sequence length is divisible by multiple"
        },
    )

@register_model("joint_ed", dataclass=JointEDConfig)
class JointEDModel(HubertModel):
    def __init__(
        self,
        cfg: JointEDConfig,
        task_cfg: JointPretrainingConfig,
        dictionaries: List[Dictionary],
        text_dictionary: Dictionary = None,
    ) -> None:
        super().__init__(cfg, task_cfg, dictionaries)
        logger.info(f"JointEDModel Config: {cfg}")

        self.encoder = TransformerEncoder(cfg)

        ### build speeech-text joint_pretrain net from:
        ### - add_text_modality is false: no text network
        ### - add_text_modality is true, add_text_encoder=False: build text embedding
        ### - add_text_modality is true, add_text_encoder=True: build text embedding and encoder
        assert cfg.add_text_modality
        assert cfg.add_text_encoder
        assert cfg.share_text_encoder
        assert text_dictionary is not None
        self.add_text_modality = cfg.add_text_modality
        self.add_text_encoder = cfg.add_text_encoder
        self.share_text_encoder = cfg.share_text_encoder

        if cfg.share_s2t_t2t_embeddings:
            text_dictionary = self.cutting_dictionary(text_dictionary, cfg.decoder_dict_size)
        
        ### build text encoder
        text_encoder_embed_tokens = self.build_embedding(
                text_dictionary, cfg.text_transformer.encoder.embed_dim
            )
        self.text_encoder = TransformerEncoderBase(
            cfg.text_transformer, 
            text_dictionary, 
            text_encoder_embed_tokens
        )
        
        ### build text decoder
        self.add_decoder = task_cfg.add_decoder
        if self.add_decoder:
            # To make sure that the decoder dict size is the same as the fine-tuning tgt_dict size or bpe code dict size
            s2t_dec_dict = self.cutting_dictionary(dictionaries[0], cfg.decoder_dict_size)
            if text_dictionary is None:
                decoder_dict_list = [s2t_dec_dict]
            else:
                decoder_dict_list = [s2t_dec_dict, text_dictionary]

            decoder_embed_tokens = [
                self.build_embedding(dictionary, cfg.decoder_embed_dim)
                for dictionary in decoder_dict_list
            ]
            
            if cfg.share_enc_dec_embeddings and text_dictionary is not None:
                assert cfg.share_decoder_input_output_embed, "Must share decoder input-output embed before share encoder-decoder embed"
                logger.info("--------------------------------: share input-output embeddings")
                decoder_embed_tokens[-1] = text_encoder_embed_tokens
            
            if cfg.share_s2t_t2t_embeddings:
                logger.info("--------------------------------: share s2t-t2t embeddings")
                assert len(s2t_dec_dict) == len(text_dictionary), "s2t embed len must be equal to t2t embed len"
                decoder_embed_tokens[0] = text_encoder_embed_tokens

            if len(decoder_embed_tokens) == 1:
                self.decoder = TransformerDecoderScriptable(cfg, decoder_dict_list[0], decoder_embed_tokens[0])
            else:
                self.decoder = MultimodalTransformerDecoder(cfg, decoder_dict_list, decoder_embed_tokens)

        self.add_adaptor = cfg.add_adaptor
        if self.add_adaptor:
            assert self.add_text_encoder, "Cannot shared encoder for text and speech once add adaptor"
            self.adaptor = Conv1dAdaptor(
                cfg.encoder_embed_dim,
                cfg.decoder_embed_dim,
                n_layers=cfg.adaptor_n_layers,
                kernel_size=cfg.adaptor_kernel_size,
                stride=cfg.adaptor_stride,
                add_layernorm=cfg.adaptor_layernorm,
            )

        if cfg.load_pretrained_w2v_from is not None:
            w2v_model_state = self.load_checkpoint(cfg.load_pretrained_w2v_from)
            self.feature_extractor = self.load_pretrained_component_from_model(
                component=self.feature_extractor, state=w2v_model_state
            )
            
            self.encoder = self.load_pretrained_component_from_model(
                component=self.encoder, state=w2v_model_state
            )
            
            self.post_extract_proj.weight = torch.nn.Parameter(w2v_model_state["model"]["post_extract_proj.weight"])
            self.post_extract_proj.bias = torch.nn.Parameter(w2v_model_state["model"]["post_extract_proj.bias"])

            # self.final_proj.weight = torch.nn.Parameter(w2v_model_state["model"]["final_proj.weight"])
            # self.final_proj.bias = torch.nn.Parameter(w2v_model_state["model"]["final_proj.bias"])

            self.layer_norm.weight = torch.nn.Parameter(w2v_model_state["model"]["layer_norm.weight"])
            self.layer_norm.bias = torch.nn.Parameter(w2v_model_state["model"]["layer_norm.bias"])

            # self.label_embs_concat.data = torch.nn.Parameter(w2v_model_state["model"]["label_embs_concat"])
            self.mask_emb.data = torch.nn.Parameter(w2v_model_state["model"]["mask_emb"])

        if cfg.load_pretrained_mbart_from is not None:
            mbart_model_state = self.load_checkpoint(cfg.load_pretrained_mbart_from)
            if self.add_text_modality and self.add_text_encoder:
                self.text_encoder = self.load_pretrained_component_from_model(
                    component=self.text_encoder, state=mbart_model_state
                )
            if self.add_decoder:
                self.decoder = self.load_pretrained_component_from_model(
                    component=self.decoder, state=mbart_model_state
                )
    
    def cutting_dictionary(self, dictionary, dict_size):
        if dictionary is None or dict_size <= 0:
            return dictionary
        else:
            cut_dictionary = copy.deepcopy(dictionary)
            if dict_size > len(cut_dictionary):
                for i in range(dict_size - len(cut_dictionary)):
                    cut_dictionary.symbols.append(f'_{i}_')
            else:
                cut_dictionary.symbols = cut_dictionary.symbols[:dict_size]
            return cut_dictionary

    def build_embedding(self, dictionary, embed_dim):
        num_embeddings = len(dictionary)
        padding_idx = dictionary.pad()
        return Embedding(num_embeddings, embed_dim, padding_idx)

    @classmethod
    def build_model(cls, cfg: HubertConfig, task: JointPretrainingTask):
        """Build a new model instance."""
        # Change dict size for bpe code
        if hasattr(task, "hubert_tokenizer") and task.hubert_tokenizer is not None and not task.fine_tuning and cfg.decoder_dict_size == -1:
            cfg.decoder_dict_size = len(task.hubert_tokenizer.sp)
            logger.info(f"Use acoustic pieces as code, set decoder dict size to {len(task.hubert_tokenizer.sp)}")

        text_dictionary = getattr(task, "text_dictionary", None)
        model = JointEDModel(cfg, task.cfg, task.dictionaries, text_dictionary)
        return model

    def get_normalized_probs(
        self,
        net_output: Tuple[Tensor, Optional[Dict[str, List[Optional[Tensor]]]]],
        log_probs: bool,
        sample: Optional[Dict[str, Tensor]] = None,
    ):
        # net_output['encoder_out'] is a (B, T, D) tensor
        lprobs = self.get_normalized_probs_scriptable(net_output, log_probs, sample)
        lprobs.batch_first = True
        return lprobs

    def forward(
        self,
        source: torch.Tensor = None,
        src_tokens: torch.Tensor = None,
        src_lengths: torch.Tensor = None,
        target_list: Optional[List[torch.Tensor]] = None,
        padding_mask: Optional[torch.Tensor] = None,
        mask: bool = True,
        features_only: bool = False,
        output_layer: Optional[int] = None,
        prev_output_tokens: Optional[torch.Tensor] = None,
        text_modal_idx: Optional[int] = -1,
    ) -> Dict[str, torch.Tensor]:
        """output layer is 1-based"""
        assert source is not None or src_tokens is not None
        if source is not None:
            ### 1. go speech cnn-encoder-decoder branch
            features = self.forward_features(source)
            if target_list is not None:
                features, target_list = self.forward_targets(features, target_list)

            features_pen = features.float().pow(2).mean()

            features = features.transpose(1, 2)
            features = self.layer_norm(features)
            unmasked_features = features.clone()

            if padding_mask is not None:
                padding_mask = self.forward_padding_mask(features, padding_mask)

            if self.post_extract_proj is not None:
                features = self.post_extract_proj(features)

            features = self.dropout_input(features)
            unmasked_features = self.dropout_features(unmasked_features)

            if mask:
                x, mask_indices = self.apply_mask(features, padding_mask, target_list)
            else:
                x = features
                mask_indices = None

            # feature: (B, T, D), float
            # target: (B, T), long
            # x: (B, T, D), float
            # padding_mask: (B, T), bool
            # mask_indices: (B, T), bool
            x, _ = self.encoder(
                x,
                padding_mask=padding_mask,
                layer=None if output_layer is None else output_layer - 1,
            )

            if features_only:
                return {"x": x, "padding_mask": padding_mask, "features": features}

            def compute_pred(proj_x, target, label_embs):
                # compute logits for the i-th label set
                y = torch.index_select(label_embs, 0, target.long())
                negs = label_embs.unsqueeze(1).expand(-1, proj_x.size(0), -1)
                if self.target_glu:
                    y = self.target_glu(y)
                    negs = self.target_glu(negs)
                # proj_x: (S, D)
                # y: (S, D)
                # negs: (Neg, S, D)
                return self.compute_nce(proj_x, y, negs)

            label_embs_list = self.label_embs_concat.split(self.num_classes, 0)

            if not self.skip_masked:
                masked_indices = torch.logical_and(~padding_mask, mask_indices)
                proj_x_m = self.final_proj(x[masked_indices])
                if self.untie_final_proj:
                    proj_x_m_list = proj_x_m.chunk(len(target_list), dim=-1)
                else:
                    proj_x_m_list = [proj_x_m for _ in range(len(target_list))]
                logit_m_list = [
                    compute_pred(proj_x_m, t[masked_indices], label_embs_list[i])
                    for i, (proj_x_m, t) in enumerate(zip(proj_x_m_list, target_list))
                ]
            else:
                logit_m_list = [None for _ in target_list]

            if not self.skip_nomask:
                nomask_indices = torch.logical_and(~padding_mask, ~mask_indices)
                proj_x_u = self.final_proj(x[nomask_indices])
                if self.untie_final_proj:
                    proj_x_u_list = proj_x_u.chunk(len(target_list), dim=-1)
                else:
                    proj_x_u_list = [proj_x_u for _ in range(len(target_list))]

                logit_u_list = [
                    compute_pred(proj_x_u, t[nomask_indices], label_embs_list[i])
                    for i, (proj_x_u, t) in enumerate(zip(proj_x_u_list, target_list))
                ]
            else:
                logit_u_list = [None for _ in target_list]

            result = {
                "logit_m_list": logit_m_list,
                "logit_u_list": logit_u_list,
                "padding_mask": padding_mask,
                "features_pen": features_pen,
            }
            
            x = x.transpose(0, 1) # T x B x C
            # adaptor layers
            if self.add_adaptor:
                x, padding_mask = self.adaptor(x, padding_mask)

            # text encoder layers
            if self.add_text_encoder and self.share_text_encoder:
                for layer in self.text_encoder.layers:
                    x = layer(
                        x, encoder_padding_mask=padding_mask
                    )
                if self.text_encoder.layer_norm is not None:
                    x = self.text_encoder.layer_norm(x)

            # decoder layers
            if self.add_decoder:
                encoder_out = {
                    "encoder_out": [x],  # T x B x C
                    "encoder_padding_mask": [padding_mask],  # B x T
                }
                assert prev_output_tokens is not None
                decoder_out = self.decoder(
                    prev_output_tokens=prev_output_tokens, encoder_out=encoder_out
                )
                result['decoder_out'] = decoder_out
        else:
            ### 2. go text encoder-decoder branch
            if self.add_text_encoder:
                encoder_out = self.text_encoder(
                    src_tokens, src_lengths=src_lengths, return_all_hiddens=False
                )
            else:
                encoder_padding_mask = src_tokens.eq(self.text_padding_idx)
                has_pads = src_tokens.device.type == "xla" or encoder_padding_mask.any()
                x = self.text_embed_scale * self.text_encoder_embed_tokens(src_tokens)
                x = x + self.text_embed_positions(src_tokens)
                # x = self.dropout_input(x)
                if has_pads:
                    x = x * (1 - encoder_padding_mask.unsqueeze(-1).type_as(x))
                kwargs={"modality": "text"} if self.split_attention else {}
                x, _ = self.encoder(
                    x,
                    padding_mask=encoder_padding_mask,
                    conv_pos=False,
                    **kwargs,
                )
                encoder_out = {
                    "encoder_out": [x.transpose(0, 1)],  # T x B x C
                    "encoder_padding_mask": [encoder_padding_mask],  # B x T
                    "src_lengths": [src_lengths],
                }
            
            result = {"encoder_out": encoder_out}
            if features_only:
                return result
            assert prev_output_tokens is not None
            decoder_out = self.decoder(
                prev_output_tokens=prev_output_tokens, encoder_out=encoder_out, modal_idx=text_modal_idx,
            )
            result['decoder_out'] = decoder_out

        return result

    def forward_torchscript(self, net_input: Dict[str, Tensor]):
        """A TorchScript-compatible version of forward.

        Encoders which use additional arguments may want to override
        this method for TorchScript compatibility.
        """
        res = self.forward(
            mask=False,
            features_only=True,
            **net_input,
        )

        if "source" in net_input:
            res["x"] = res["x"].transpose(0, 1) # T x B x C

            x = res["x"] # T x B x C
            padding_mask = res["padding_mask"]
            if self.add_adaptor:
                x, padding_mask = self.adaptor(x, padding_mask)

            # text encoder layers
            if self.add_text_encoder and self.share_text_encoder:
                for layer in self.text_encoder.layers:
                    x = layer(
                        x, encoder_padding_mask=padding_mask
                    )

                if self.text_encoder.layer_norm is not None:
                    x = self.text_encoder.layer_norm(x)
                
                res["x"] = x
                res["padding_mask"] = padding_mask

            encoder_out = {
                "encoder_out": [res["x"]],  # T x B x C
                "encoder_padding_mask": [res["padding_mask"]],  # B x T
            }
        else:
            encoder_out = res["encoder_out"]
            if "encoder_states" in encoder_out:
                del encoder_out["encoder_states"]
            if "src_tokens" in encoder_out:
                del encoder_out["src_tokens"]
            if "src_tokens" in encoder_out:
                del encoder_out["src_lengths"]
        return encoder_out

    def extract_features(
        self,
        source: torch.Tensor,
        padding_mask: Optional[torch.Tensor] = None,
        mask: bool = False,
        ret_conv: bool = False,
        output_layer: Optional[int] = None,
        prev_output_tokens: Optional[torch.Tensor] = None,
        ft: bool = True,
        enc_grad_mult: float = 1.0,
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        """only for speech input"""
        with torch.no_grad() if not ft else contextlib.ExitStack():
            res = self.forward(
                source,
                padding_mask=padding_mask,
                mask=mask,
                features_only=True,
                output_layer=output_layer,
            )

        feature = res["features"] if ret_conv else res["x"]

        res["x"] = res["x"].transpose(0, 1) # T x B x C
        x = res["x"] # T x B x C
        padding_mask = res["padding_mask"]
        if self.add_adaptor:
            x, padding_mask = self.adaptor(x, padding_mask)

        # text encoder layers
        if self.add_text_encoder and self.share_text_encoder:
            for layer in self.text_encoder.layers:
                x = layer(
                    x, encoder_padding_mask=padding_mask
                )

            if self.text_encoder.layer_norm is not None:
                x = self.text_encoder.layer_norm(x)
            
            res["x"] = x
            res["padding_mask"] = padding_mask

        if self.add_decoder and prev_output_tokens is not None:
            encoder_out = {
                "encoder_out": [res["x"]],  # T x B x C
                "encoder_padding_mask": [res["padding_mask"]],  # B x T
            }
            
            if enc_grad_mult != 1.0:
                encoder_out = self.mult_rst_grad(encoder_out, enc_grad_mult)

            assert prev_output_tokens is not None
            decoder_out = self.decoder(
                prev_output_tokens=prev_output_tokens, 
                encoder_out=encoder_out,
            )
        else:
            decoder_out = None
        return feature, res["padding_mask"], decoder_out

    def mult_rst_grad(self, rst, ratio):
        assert isinstance(rst, dict)  # instead of EncoderOut
        assert len(rst["encoder_out"]) == 1
        rst["encoder_out"][0] = GradMultiply.apply(rst["encoder_out"][0], ratio)
        return rst


    def remove_pretraining_modules(self, step2=False):
        self.target_glu = None
        self.final_proj = None
        if self.add_text_modality:
            # Delete text embeddings of text encoder
            if not step2:
                if self.add_text_encoder:
                    self.text_encoder.embed_tokens = None
                    if hasattr(self.text_encoder, "embed_positions"):
                        self.text_encoder.embed_tokens = None
                    if hasattr(self.text_encoder, "layernorm_embedding"):
                        self.text_encoder.layernorm_embedding = None
                else:
                    self.text_encoder_embed_tokens = None
                    self.text_embed_positions = None
            if isinstance(self.decoder, MultimodalTransformerDecoder):
                # Delete text embeddings of decoder
                self.decoder.embed_tokens_list = self.decoder.embed_tokens_list[:1]
                self.decoder.output_projection = self.decoder.output_projection[:1]

    def load_checkpoint(self, checkpoint: str):
        if not PathManager.exists(checkpoint):
            raise IOError("Model file not found: {}".format(checkpoint))
        state = checkpoint_utils.load_checkpoint_to_cpu(checkpoint)
        return state
        
    def load_pretrained_component_from_model(
        self, component: Union[TransformerEncoderBase, TransformerEncoder, W2vTransformerEncoder, FairseqDecoder, ConvFeatureExtractionModel], state
    ):
        """
        Load a pretrained FairseqEncoder or FairseqDecoder from checkpoint into the
        provided `component` object. If state_dict fails to load, there may be a
        mismatch in the architecture of the corresponding `component` found in the
        `checkpoint` file.
        """
        if isinstance(component, (TransformerEncoderBase, TransformerEncoder, W2vTransformerEncoder)):
            component_type = "encoder"
        elif isinstance(component, FairseqDecoder):
            component_type = "decoder"
            if isinstance(component, MultimodalTransformerDecoder):
                state["model"]["decoder.embed_tokens_list.1.weight"] = state["model"]["decoder.embed_tokens.weight"]
                state["model"]["decoder.output_projection.1.weight"] = state["model"]["decoder.output_projection.weight"]
        elif isinstance(component, ConvFeatureExtractionModel):
            component_type = "feature_extractor"
        else:
            print(component)
            raise ValueError(
                "component to load must be either a FairseqEncoder or "
                "FairseqDecoder. Loading other component types are not supported."
            )
        component_state_dict = OrderedDict()
        for key in state["model"].keys():
            if key.startswith(component_type):
                # encoder.input_layers.0.0.weight --> input_layers.0.0.weight
                component_subkey = key[len(component_type) + 1 :]
                component_state_dict[component_subkey] = state["model"][key]
        try:
            logger.info(f"Load {component_type}")
            component.load_state_dict(component_state_dict, strict=True)
        except Exception as e:
            logger.warn(e)
            component.load_state_dict(component_state_dict, strict=False)
        return component