Spaces:
Runtime error
Runtime error
File size: 28,635 Bytes
62e9ca6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 |
# --------------------------------------------------------
# The YiTrans End-to-End Speech Translation System for IWSLT 2022 Offline Shared Task (https://arxiv.org/abs/2206.05777)
# Github source: https://github.com/microsoft/SpeechT5/tree/main/YiTrans
# Copyright (c) 2022 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Based on fairseq code bases
# https://github.com/facebookresearch/fairseq
# --------------------------------------------------------
import logging
import contextlib
from dataclasses import dataclass, field
from typing import Dict, List, Optional, Tuple, Union
from collections import OrderedDict
import copy
import torch
from omegaconf import II
from fairseq import checkpoint_utils
from fairseq.data.dictionary import Dictionary
from fairseq.dataclass import ChoiceEnum
from fairseq.models import register_model, FairseqDecoder
from fairseq.models.transformer import (
TransformerEncoderBase,
TransformerConfig,
)
from fairseq.models.speech_to_text import Conv1dAdaptor
from fairseq.models.transformer import Embedding
from fairseq.file_io import PathManager
from torch import Tensor
from fairseq.models.wav2vec.wav2vec2 import ConvFeatureExtractionModel
from fairseq.modules import GradMultiply
from fairseq.models.hubert import HubertConfig, HubertModel
from fairseq.models.wav2vec.wav2vec2 import TransformerEncoder as W2vTransformerEncoder
from yitrans_iwslt22.modules.w2v_encoder import TransformerEncoder
from yitrans_iwslt22.modules.transformer_decoder import TransformerDecoderScriptable
from yitrans_iwslt22.modules.multimodal_transformer_decoder import MultimodalTransformerDecoder
from yitrans_iwslt22.tasks.iwslt_joint_pretraining import (
JointPretrainingConfig,
JointPretrainingTask,
)
logger = logging.getLogger(__name__)
EXTRACTOR_MODE_CHOICES = ChoiceEnum(["default", "layer_norm"])
MASKING_DISTRIBUTION_CHOICES = ChoiceEnum(["static", "uniform", "normal", "poisson"])
@dataclass
class JointEDConfig(HubertConfig):
use_rel_pos_enc: bool = field(
default=False,
metadata={"help": "whether to use relative positional encoding"},
)
# decoder
decoder_layers: int = field(
default=6, metadata={"help": "num decoder layers in the transformer"}
)
decoder_embed_dim: int = field(
default=768, metadata={"help": "decoder embedding dimension"}
)
decoder_ffn_embed_dim: int = field(
default=3072, metadata={"help": "decoder embedding dimension for FFN"}
)
decoder_attention_heads: int = field(
default=12, metadata={"help": "num decoder attention heads"}
)
decoder_normalize_before: bool = field(
default=False,
metadata={"help": "apply layernorm before each decoder block"},
)
layernorm_embedding: bool = field(
default=False,
metadata={"help": "apply layernorm to embedding for decoder"},
)
decoder_layerdrop: float = field(
default=0.1,
metadata={"help": "probability of dropping a tarnsformer layer"},
)
share_decoder_input_output_embed: bool = field(
default=False,
metadata={"help": "share decoder input and output embeddings"},
)
share_enc_dec_embeddings: bool = field(
default=False,
metadata={"help": "share embeddings of (text encoder, text decoder)"},
)
share_s2t_t2t_embeddings: bool = field(
default=False,
metadata={"help": "share embeddings of (speech2text(code), text2text)"},
)
decoder_output_dim: int = field(
default=768, metadata={"help": "decoder output dimension"}
)
max_target_positions: int = field(
default=3000, metadata={"help": "max target position"}
)
no_scale_embedding: bool = field(
default=False,
metadata={"help": "not scale embedding"},
)
adaptive_input: bool = field(
default=False,
metadata={"help": "adaptive input"},
)
quant_noise_pq: int = field(
default=0, metadata={"help": "quant noise pq"}
)
decoder_learned_pos: bool = field(
default=False,
metadata={"help": "decoder learnable positional embedding"},
)
no_token_positional_embeddings: bool = field(
default=False,
metadata={"help": "no token positional embeddings"},
)
add_text_modality: bool = field(
default=-False,
metadata={"help": "add text modality, mainly used in pretrainnig"},
)
add_text_encoder: bool = field(
default=False,
metadata={"help": "add_text_encoder"},
)
share_text_encoder: bool = field(
default=True,
metadata={"help": "share text encoder so that speech branch go through it"},
)
split_attention: bool = field(
default=False,
metadata={"help": "use shared but split encoders"},
)
add_adaptor: bool = field(
default=False,
metadata={"help": "add adaptor and text encoder on the top of speech encoder"},
)
adaptor_n_layers: int = field(
default=3,
metadata={"help": "number of layers for adaptor"},
)
adaptor_kernel_size: int = field(
default=3,
metadata={"help": "kernel size for adaptor"},
)
adaptor_stride: int = field(
default=2,
metadata={"help": "adaptor stride"},
)
adaptor_layernorm: bool = field(
default=False,
metadata={"help": "adaptor layernorm"},
)
# Finetune related
decoder_dict_size: int = field(
default=-1,
metadata={"help": "decoder dictionary dimension"},
)
# text encoder related, TransformerConfig is used in bart but we only use its enconder
text_transformer: TransformerConfig = TransformerConfig()
# other
checkpoint_activations: bool = field(
default=False, metadata={"help": "recompute activations and save memory for extra compute"}
)
# Load pre-train model
load_pretrained_mbart_from: Optional[str] = field(
default=None,
metadata={
"help": "model to take text encoder decoder weights from (for initialization)"
},
)
load_pretrained_w2v_from: Optional[str] = field(
default=None,
metadata={
"help": "model to take speech encoder weights from (for initialization)"
},
)
# FP16 optimization
required_seq_len_multiple: int = field(
default=1,
metadata={
"help": "pad the input to encoder such that the sequence length is divisible by multiple"
},
)
crop_seq_to_multiple: int = field(
default=1,
metadata={
"help": "crop convolutional feature extractor output such that the sequence length is divisible by multiple"
},
)
@register_model("joint_ed", dataclass=JointEDConfig)
class JointEDModel(HubertModel):
def __init__(
self,
cfg: JointEDConfig,
task_cfg: JointPretrainingConfig,
dictionaries: List[Dictionary],
text_dictionary: Dictionary = None,
) -> None:
super().__init__(cfg, task_cfg, dictionaries)
logger.info(f"JointEDModel Config: {cfg}")
self.encoder = TransformerEncoder(cfg)
### build speeech-text joint_pretrain net from:
### - add_text_modality is false: no text network
### - add_text_modality is true, add_text_encoder=False: build text embedding
### - add_text_modality is true, add_text_encoder=True: build text embedding and encoder
assert cfg.add_text_modality
assert cfg.add_text_encoder
assert cfg.share_text_encoder
assert text_dictionary is not None
self.add_text_modality = cfg.add_text_modality
self.add_text_encoder = cfg.add_text_encoder
self.share_text_encoder = cfg.share_text_encoder
if cfg.share_s2t_t2t_embeddings:
text_dictionary = self.cutting_dictionary(text_dictionary, cfg.decoder_dict_size)
### build text encoder
text_encoder_embed_tokens = self.build_embedding(
text_dictionary, cfg.text_transformer.encoder.embed_dim
)
self.text_encoder = TransformerEncoderBase(
cfg.text_transformer,
text_dictionary,
text_encoder_embed_tokens
)
### build text decoder
self.add_decoder = task_cfg.add_decoder
if self.add_decoder:
# To make sure that the decoder dict size is the same as the fine-tuning tgt_dict size or bpe code dict size
s2t_dec_dict = self.cutting_dictionary(dictionaries[0], cfg.decoder_dict_size)
if text_dictionary is None:
decoder_dict_list = [s2t_dec_dict]
else:
decoder_dict_list = [s2t_dec_dict, text_dictionary]
decoder_embed_tokens = [
self.build_embedding(dictionary, cfg.decoder_embed_dim)
for dictionary in decoder_dict_list
]
if cfg.share_enc_dec_embeddings and text_dictionary is not None:
assert cfg.share_decoder_input_output_embed, "Must share decoder input-output embed before share encoder-decoder embed"
logger.info("--------------------------------: share input-output embeddings")
decoder_embed_tokens[-1] = text_encoder_embed_tokens
if cfg.share_s2t_t2t_embeddings:
logger.info("--------------------------------: share s2t-t2t embeddings")
assert len(s2t_dec_dict) == len(text_dictionary), "s2t embed len must be equal to t2t embed len"
decoder_embed_tokens[0] = text_encoder_embed_tokens
if len(decoder_embed_tokens) == 1:
self.decoder = TransformerDecoderScriptable(cfg, decoder_dict_list[0], decoder_embed_tokens[0])
else:
self.decoder = MultimodalTransformerDecoder(cfg, decoder_dict_list, decoder_embed_tokens)
self.add_adaptor = cfg.add_adaptor
if self.add_adaptor:
assert self.add_text_encoder, "Cannot shared encoder for text and speech once add adaptor"
self.adaptor = Conv1dAdaptor(
cfg.encoder_embed_dim,
cfg.decoder_embed_dim,
n_layers=cfg.adaptor_n_layers,
kernel_size=cfg.adaptor_kernel_size,
stride=cfg.adaptor_stride,
add_layernorm=cfg.adaptor_layernorm,
)
if cfg.load_pretrained_w2v_from is not None:
w2v_model_state = self.load_checkpoint(cfg.load_pretrained_w2v_from)
self.feature_extractor = self.load_pretrained_component_from_model(
component=self.feature_extractor, state=w2v_model_state
)
self.encoder = self.load_pretrained_component_from_model(
component=self.encoder, state=w2v_model_state
)
self.post_extract_proj.weight = torch.nn.Parameter(w2v_model_state["model"]["post_extract_proj.weight"])
self.post_extract_proj.bias = torch.nn.Parameter(w2v_model_state["model"]["post_extract_proj.bias"])
# self.final_proj.weight = torch.nn.Parameter(w2v_model_state["model"]["final_proj.weight"])
# self.final_proj.bias = torch.nn.Parameter(w2v_model_state["model"]["final_proj.bias"])
self.layer_norm.weight = torch.nn.Parameter(w2v_model_state["model"]["layer_norm.weight"])
self.layer_norm.bias = torch.nn.Parameter(w2v_model_state["model"]["layer_norm.bias"])
# self.label_embs_concat.data = torch.nn.Parameter(w2v_model_state["model"]["label_embs_concat"])
self.mask_emb.data = torch.nn.Parameter(w2v_model_state["model"]["mask_emb"])
if cfg.load_pretrained_mbart_from is not None:
mbart_model_state = self.load_checkpoint(cfg.load_pretrained_mbart_from)
if self.add_text_modality and self.add_text_encoder:
self.text_encoder = self.load_pretrained_component_from_model(
component=self.text_encoder, state=mbart_model_state
)
if self.add_decoder:
self.decoder = self.load_pretrained_component_from_model(
component=self.decoder, state=mbart_model_state
)
def cutting_dictionary(self, dictionary, dict_size):
if dictionary is None or dict_size <= 0:
return dictionary
else:
cut_dictionary = copy.deepcopy(dictionary)
if dict_size > len(cut_dictionary):
for i in range(dict_size - len(cut_dictionary)):
cut_dictionary.symbols.append(f'_{i}_')
else:
cut_dictionary.symbols = cut_dictionary.symbols[:dict_size]
return cut_dictionary
def build_embedding(self, dictionary, embed_dim):
num_embeddings = len(dictionary)
padding_idx = dictionary.pad()
return Embedding(num_embeddings, embed_dim, padding_idx)
@classmethod
def build_model(cls, cfg: HubertConfig, task: JointPretrainingTask):
"""Build a new model instance."""
# Change dict size for bpe code
if hasattr(task, "hubert_tokenizer") and task.hubert_tokenizer is not None and not task.fine_tuning and cfg.decoder_dict_size == -1:
cfg.decoder_dict_size = len(task.hubert_tokenizer.sp)
logger.info(f"Use acoustic pieces as code, set decoder dict size to {len(task.hubert_tokenizer.sp)}")
text_dictionary = getattr(task, "text_dictionary", None)
model = JointEDModel(cfg, task.cfg, task.dictionaries, text_dictionary)
return model
def get_normalized_probs(
self,
net_output: Tuple[Tensor, Optional[Dict[str, List[Optional[Tensor]]]]],
log_probs: bool,
sample: Optional[Dict[str, Tensor]] = None,
):
# net_output['encoder_out'] is a (B, T, D) tensor
lprobs = self.get_normalized_probs_scriptable(net_output, log_probs, sample)
lprobs.batch_first = True
return lprobs
def forward(
self,
source: torch.Tensor = None,
src_tokens: torch.Tensor = None,
src_lengths: torch.Tensor = None,
target_list: Optional[List[torch.Tensor]] = None,
padding_mask: Optional[torch.Tensor] = None,
mask: bool = True,
features_only: bool = False,
output_layer: Optional[int] = None,
prev_output_tokens: Optional[torch.Tensor] = None,
text_modal_idx: Optional[int] = -1,
) -> Dict[str, torch.Tensor]:
"""output layer is 1-based"""
assert source is not None or src_tokens is not None
if source is not None:
### 1. go speech cnn-encoder-decoder branch
features = self.forward_features(source)
if target_list is not None:
features, target_list = self.forward_targets(features, target_list)
features_pen = features.float().pow(2).mean()
features = features.transpose(1, 2)
features = self.layer_norm(features)
unmasked_features = features.clone()
if padding_mask is not None:
padding_mask = self.forward_padding_mask(features, padding_mask)
if self.post_extract_proj is not None:
features = self.post_extract_proj(features)
features = self.dropout_input(features)
unmasked_features = self.dropout_features(unmasked_features)
if mask:
x, mask_indices = self.apply_mask(features, padding_mask, target_list)
else:
x = features
mask_indices = None
# feature: (B, T, D), float
# target: (B, T), long
# x: (B, T, D), float
# padding_mask: (B, T), bool
# mask_indices: (B, T), bool
x, _ = self.encoder(
x,
padding_mask=padding_mask,
layer=None if output_layer is None else output_layer - 1,
)
if features_only:
return {"x": x, "padding_mask": padding_mask, "features": features}
def compute_pred(proj_x, target, label_embs):
# compute logits for the i-th label set
y = torch.index_select(label_embs, 0, target.long())
negs = label_embs.unsqueeze(1).expand(-1, proj_x.size(0), -1)
if self.target_glu:
y = self.target_glu(y)
negs = self.target_glu(negs)
# proj_x: (S, D)
# y: (S, D)
# negs: (Neg, S, D)
return self.compute_nce(proj_x, y, negs)
label_embs_list = self.label_embs_concat.split(self.num_classes, 0)
if not self.skip_masked:
masked_indices = torch.logical_and(~padding_mask, mask_indices)
proj_x_m = self.final_proj(x[masked_indices])
if self.untie_final_proj:
proj_x_m_list = proj_x_m.chunk(len(target_list), dim=-1)
else:
proj_x_m_list = [proj_x_m for _ in range(len(target_list))]
logit_m_list = [
compute_pred(proj_x_m, t[masked_indices], label_embs_list[i])
for i, (proj_x_m, t) in enumerate(zip(proj_x_m_list, target_list))
]
else:
logit_m_list = [None for _ in target_list]
if not self.skip_nomask:
nomask_indices = torch.logical_and(~padding_mask, ~mask_indices)
proj_x_u = self.final_proj(x[nomask_indices])
if self.untie_final_proj:
proj_x_u_list = proj_x_u.chunk(len(target_list), dim=-1)
else:
proj_x_u_list = [proj_x_u for _ in range(len(target_list))]
logit_u_list = [
compute_pred(proj_x_u, t[nomask_indices], label_embs_list[i])
for i, (proj_x_u, t) in enumerate(zip(proj_x_u_list, target_list))
]
else:
logit_u_list = [None for _ in target_list]
result = {
"logit_m_list": logit_m_list,
"logit_u_list": logit_u_list,
"padding_mask": padding_mask,
"features_pen": features_pen,
}
x = x.transpose(0, 1) # T x B x C
# adaptor layers
if self.add_adaptor:
x, padding_mask = self.adaptor(x, padding_mask)
# text encoder layers
if self.add_text_encoder and self.share_text_encoder:
for layer in self.text_encoder.layers:
x = layer(
x, encoder_padding_mask=padding_mask
)
if self.text_encoder.layer_norm is not None:
x = self.text_encoder.layer_norm(x)
# decoder layers
if self.add_decoder:
encoder_out = {
"encoder_out": [x], # T x B x C
"encoder_padding_mask": [padding_mask], # B x T
}
assert prev_output_tokens is not None
decoder_out = self.decoder(
prev_output_tokens=prev_output_tokens, encoder_out=encoder_out
)
result['decoder_out'] = decoder_out
else:
### 2. go text encoder-decoder branch
if self.add_text_encoder:
encoder_out = self.text_encoder(
src_tokens, src_lengths=src_lengths, return_all_hiddens=False
)
else:
encoder_padding_mask = src_tokens.eq(self.text_padding_idx)
has_pads = src_tokens.device.type == "xla" or encoder_padding_mask.any()
x = self.text_embed_scale * self.text_encoder_embed_tokens(src_tokens)
x = x + self.text_embed_positions(src_tokens)
# x = self.dropout_input(x)
if has_pads:
x = x * (1 - encoder_padding_mask.unsqueeze(-1).type_as(x))
kwargs={"modality": "text"} if self.split_attention else {}
x, _ = self.encoder(
x,
padding_mask=encoder_padding_mask,
conv_pos=False,
**kwargs,
)
encoder_out = {
"encoder_out": [x.transpose(0, 1)], # T x B x C
"encoder_padding_mask": [encoder_padding_mask], # B x T
"src_lengths": [src_lengths],
}
result = {"encoder_out": encoder_out}
if features_only:
return result
assert prev_output_tokens is not None
decoder_out = self.decoder(
prev_output_tokens=prev_output_tokens, encoder_out=encoder_out, modal_idx=text_modal_idx,
)
result['decoder_out'] = decoder_out
return result
def forward_torchscript(self, net_input: Dict[str, Tensor]):
"""A TorchScript-compatible version of forward.
Encoders which use additional arguments may want to override
this method for TorchScript compatibility.
"""
res = self.forward(
mask=False,
features_only=True,
**net_input,
)
if "source" in net_input:
res["x"] = res["x"].transpose(0, 1) # T x B x C
x = res["x"] # T x B x C
padding_mask = res["padding_mask"]
if self.add_adaptor:
x, padding_mask = self.adaptor(x, padding_mask)
# text encoder layers
if self.add_text_encoder and self.share_text_encoder:
for layer in self.text_encoder.layers:
x = layer(
x, encoder_padding_mask=padding_mask
)
if self.text_encoder.layer_norm is not None:
x = self.text_encoder.layer_norm(x)
res["x"] = x
res["padding_mask"] = padding_mask
encoder_out = {
"encoder_out": [res["x"]], # T x B x C
"encoder_padding_mask": [res["padding_mask"]], # B x T
}
else:
encoder_out = res["encoder_out"]
if "encoder_states" in encoder_out:
del encoder_out["encoder_states"]
if "src_tokens" in encoder_out:
del encoder_out["src_tokens"]
if "src_tokens" in encoder_out:
del encoder_out["src_lengths"]
return encoder_out
def extract_features(
self,
source: torch.Tensor,
padding_mask: Optional[torch.Tensor] = None,
mask: bool = False,
ret_conv: bool = False,
output_layer: Optional[int] = None,
prev_output_tokens: Optional[torch.Tensor] = None,
ft: bool = True,
enc_grad_mult: float = 1.0,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""only for speech input"""
with torch.no_grad() if not ft else contextlib.ExitStack():
res = self.forward(
source,
padding_mask=padding_mask,
mask=mask,
features_only=True,
output_layer=output_layer,
)
feature = res["features"] if ret_conv else res["x"]
res["x"] = res["x"].transpose(0, 1) # T x B x C
x = res["x"] # T x B x C
padding_mask = res["padding_mask"]
if self.add_adaptor:
x, padding_mask = self.adaptor(x, padding_mask)
# text encoder layers
if self.add_text_encoder and self.share_text_encoder:
for layer in self.text_encoder.layers:
x = layer(
x, encoder_padding_mask=padding_mask
)
if self.text_encoder.layer_norm is not None:
x = self.text_encoder.layer_norm(x)
res["x"] = x
res["padding_mask"] = padding_mask
if self.add_decoder and prev_output_tokens is not None:
encoder_out = {
"encoder_out": [res["x"]], # T x B x C
"encoder_padding_mask": [res["padding_mask"]], # B x T
}
if enc_grad_mult != 1.0:
encoder_out = self.mult_rst_grad(encoder_out, enc_grad_mult)
assert prev_output_tokens is not None
decoder_out = self.decoder(
prev_output_tokens=prev_output_tokens,
encoder_out=encoder_out,
)
else:
decoder_out = None
return feature, res["padding_mask"], decoder_out
def mult_rst_grad(self, rst, ratio):
assert isinstance(rst, dict) # instead of EncoderOut
assert len(rst["encoder_out"]) == 1
rst["encoder_out"][0] = GradMultiply.apply(rst["encoder_out"][0], ratio)
return rst
def remove_pretraining_modules(self, step2=False):
self.target_glu = None
self.final_proj = None
if self.add_text_modality:
# Delete text embeddings of text encoder
if not step2:
if self.add_text_encoder:
self.text_encoder.embed_tokens = None
if hasattr(self.text_encoder, "embed_positions"):
self.text_encoder.embed_tokens = None
if hasattr(self.text_encoder, "layernorm_embedding"):
self.text_encoder.layernorm_embedding = None
else:
self.text_encoder_embed_tokens = None
self.text_embed_positions = None
if isinstance(self.decoder, MultimodalTransformerDecoder):
# Delete text embeddings of decoder
self.decoder.embed_tokens_list = self.decoder.embed_tokens_list[:1]
self.decoder.output_projection = self.decoder.output_projection[:1]
def load_checkpoint(self, checkpoint: str):
if not PathManager.exists(checkpoint):
raise IOError("Model file not found: {}".format(checkpoint))
state = checkpoint_utils.load_checkpoint_to_cpu(checkpoint)
return state
def load_pretrained_component_from_model(
self, component: Union[TransformerEncoderBase, TransformerEncoder, W2vTransformerEncoder, FairseqDecoder, ConvFeatureExtractionModel], state
):
"""
Load a pretrained FairseqEncoder or FairseqDecoder from checkpoint into the
provided `component` object. If state_dict fails to load, there may be a
mismatch in the architecture of the corresponding `component` found in the
`checkpoint` file.
"""
if isinstance(component, (TransformerEncoderBase, TransformerEncoder, W2vTransformerEncoder)):
component_type = "encoder"
elif isinstance(component, FairseqDecoder):
component_type = "decoder"
if isinstance(component, MultimodalTransformerDecoder):
state["model"]["decoder.embed_tokens_list.1.weight"] = state["model"]["decoder.embed_tokens.weight"]
state["model"]["decoder.output_projection.1.weight"] = state["model"]["decoder.output_projection.weight"]
elif isinstance(component, ConvFeatureExtractionModel):
component_type = "feature_extractor"
else:
print(component)
raise ValueError(
"component to load must be either a FairseqEncoder or "
"FairseqDecoder. Loading other component types are not supported."
)
component_state_dict = OrderedDict()
for key in state["model"].keys():
if key.startswith(component_type):
# encoder.input_layers.0.0.weight --> input_layers.0.0.weight
component_subkey = key[len(component_type) + 1 :]
component_state_dict[component_subkey] = state["model"][key]
try:
logger.info(f"Load {component_type}")
component.load_state_dict(component_state_dict, strict=True)
except Exception as e:
logger.warn(e)
component.load_state_dict(component_state_dict, strict=False)
return component
|