##################################### # SpeechLM Base model # ##################################### [ $# -lt 2 ] && echo "Usage: $0 [gen-set=dev_clean,dev_other,test_clean,test_other]" && exit 1 [ ${PWD##*/} != SpeechLM ] && echo "Error: dir not match! Switch to SpeechLM/ and run it again!" && exit 1 model_path=$1 DATA_DIR=$2 gen_set=$3 [ -z $gen_set ] && gen_set="dev_clean,dev_other,test_clean,test_other" src_dir=${model_path%/*} cpt=${model_path##*/} cpt=${cpt%.*} CODE_ROOT=${PWD} for subset in ${gen_set//,/ }; do results_path=$src_dir/decode_${cpt}_ctc/${subset} [ ! -d $results_path ] && mkdir -p $results_path python $CODE_ROOT/speechlm/infer.py \ --config-dir $CODE_ROOT/speechlm/config/decode \ --config-name infer_viterbi \ common.user_dir=$CODE_ROOT/speechlm \ \ dataset.gen_subset=${subset} \ task.data=$DATA_DIR task.label_dir=$DATA_DIR task.normalize=false \ common_eval.results_path=${results_path} common_eval.path=${model_path} \ \ common_eval.quiet=true \ & done wait ### important to know # When loading the fine-tuned model for decoding, fairseq also loads the pre-trained model to use its states['model'] to build the model instance. # To prevent the error about the w2v_path (if you don't have the pre-trained model at w2v_path), we set common_eval.model_overrides to override # the w2v_path by speechlmp_base_cfg.pt. speechlmp_base_cfg.pt is just a pre-trained model checkpoint without parameters (only contains config). # So, if you have trained a model with different model config (e.g. different encoder layers), you should modify the common_eval.model_overrides to your own. # common_eval.model_overrides=\"{\'w2v_path\':\'$CODE_ROOT/speechlm/config/pretrain/speechlmp_base_cfg.pt\'}\" \