Spaces:
Runtime error
Runtime error
File size: 2,831 Bytes
1547a56 4e8e8e3 1547a56 0c28d14 1547a56 ea38bcc 1547a56 ea38bcc 1547a56 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
import os
import torch
import gradio as gr
import os.path as op
import pyarabic.araby as araby
from artst.tasks.artst import ArTSTTask
from transformers import SpeechT5HifiGan
from artst.models.artst import ArTSTTransformerModel
from fairseq.tasks.hubert_pretraining import LabelEncoder
from fairseq.data.audio.speech_to_text_dataset import get_features_or_waveform
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
WORK_DIR = os.getcwd()
checkpoint = torch.load('ckpts/clartts_tts.pt')
checkpoint['cfg']['task'].t5_task = 't2s'
checkpoint['cfg']['task'].hubert_label_dir = "utils/"
checkpoint['cfg']['task'].bpe_tokenizer = "utils/arabic.model"
checkpoint['cfg']['task'].data = "utils/"
task = ArTSTTask.setup_task(checkpoint['cfg']['task'])
emb_path='embs/clartts.npy'
model = ArTSTTransformerModel.build_model(checkpoint['cfg']['model'], task)
model.load_state_dict(checkpoint['model'])
checkpoint['cfg']['task'].bpe_tokenizer = task.build_bpe(checkpoint['cfg']['model'])
tokenizer = checkpoint['cfg']['task'].bpe_tokenizer
processor = LabelEncoder(task.dicts['text'])
vocoder = SpeechT5HifiGan.from_pretrained('microsoft/speecht5_hifigan').to(device)
def get_embs(emb_path):
spkembs = get_features_or_waveform(emb_path)
spkembs = torch.from_numpy(spkembs).float().unsqueeze(0)
return spkembs
def process_text(text):
text = araby.strip_diacritics(text)
return processor(tokenizer.encode(text)).reshape(1, -1)
net_input = {}
def inference(text, spkr=emb_path):
net_input['src_tokens'] = process_text(text)
net_input['spkembs'] = get_embs(spkr)
outs, _, attn = task.generate_speech(
[model],
net_input,
)
with torch.no_grad():
gen_audio = vocoder(outs.to(device))
return (16000,gen_audio.cpu().numpy())
text_box = gr.Textbox(max_lines=2, label="Arabic Text", rtl=True)
out = gr.Audio(label="Synthesized Audio", type="numpy")
title="ArTST: Arabic Speech Synthesis"
description="ArTST: Arabic text and speech transformer based on the T5 transformer. This space demonstarates the TTS checkpoint finetuned on \
the CLARTTS dataset. The model is pre-trained on the MGB-2 dataset.Check the <a href='https://github.com/mbzuai-nlp/ArTST'> ArTST repo</a> for implementation code and \
Read our <a href='https://arxiv.org/abs/2310.16621'>paper</a> for more details."
examples=["ูุฃู ูุฑุงู ุงูู
ุฃููู ูู ุงูุนุงุฏุฉ ูู
ุฌุงูุจุฉ ู
ุง ุตุงุฑ ู
ุชููุง ุนููู ุจุงูู
ูุงุถุนุฉ",\
"ูู
ู ูุทูู ุญูู
ุชู ุฃู ุฌุนู ููู ุนุจุงุฏุฉ ุญุงูุชูู",\
"ูู
ู ููู
ุนุฏู ุงูุฅูุณุงู ู
ุน ู
ู ูููู"]
demo = gr.Interface(inference, \
inputs=text_box, outputs=out, title=title, description=description, examples=examples)
if __name__ == "__main__":
demo.launch(share=True)
|