Spaces:
Runtime error
Runtime error
import os | |
import torch | |
import gradio as gr | |
import os.path as op | |
import pyarabic.araby as araby | |
from artst.tasks.artst import ArTSTTask | |
from transformers import SpeechT5HifiGan | |
from artst.models.artst import ArTSTTransformerModel | |
from fairseq.tasks.hubert_pretraining import LabelEncoder | |
from fairseq.data.audio.speech_to_text_dataset import get_features_or_waveform | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
WORK_DIR = os.getcwd() | |
checkpoint = torch.load('ckpts/clartts_tts.pt') | |
checkpoint['cfg']['task'].t5_task = 't2s' | |
checkpoint['cfg']['task'].hubert_label_dir = "utils/" | |
checkpoint['cfg']['task'].bpe_tokenizer = "utils/arabic.model" | |
checkpoint['cfg']['task'].data = "utils/" | |
task = ArTSTTask.setup_task(checkpoint['cfg']['task']) | |
emb_path='embs/clartts.npy' | |
model = ArTSTTransformerModel.build_model(checkpoint['cfg']['model'], task) | |
model.load_state_dict(checkpoint['model']) | |
checkpoint['cfg']['task'].bpe_tokenizer = task.build_bpe(checkpoint['cfg']['model']) | |
tokenizer = checkpoint['cfg']['task'].bpe_tokenizer | |
processor = LabelEncoder(task.dicts['text']) | |
vocoder = SpeechT5HifiGan.from_pretrained('microsoft/speecht5_hifigan').to(device) | |
def get_embs(emb_path): | |
spkembs = get_features_or_waveform(emb_path) | |
spkembs = torch.from_numpy(spkembs).float().unsqueeze(0) | |
return spkembs | |
def process_text(text): | |
text = araby.strip_diacritics(text) | |
return processor(tokenizer.encode(text)).reshape(1, -1) | |
net_input = {} | |
def inference(text, spkr=emb_path): | |
net_input['src_tokens'] = process_text(text) | |
net_input['spkembs'] = get_embs(spkr) | |
outs, _, attn = task.generate_speech( | |
[model], | |
net_input, | |
) | |
with torch.no_grad(): | |
gen_audio = vocoder(outs.to(device)) | |
return (16000,gen_audio.cpu().numpy()) | |
text_box = gr.Textbox(max_lines=2, label="Arabic Text") | |
out = gr.Audio(label="Synthesized Audio", type="numpy") | |
demo = gr.Interface(inference, \ | |
inputs=text_box, outputs=out, title="ArTST") | |
if __name__ == "__main__": | |
demo.launch(share=True) | |