Spaces:
Runtime error
Runtime error
File size: 2,030 Bytes
966146c d0a604a 6c68fe0 2e53cf6 6f2882b 2e53cf6 04e8cf9 6f2882b f89e89e d0a604a 04e8cf9 6f2882b 2e53cf6 6c68fe0 2e53cf6 090154d 2e53cf6 0015db3 2e53cf6 04e8cf9 0015db3 2bf87ab 6f2882b 2bf87ab 6f2882b 04e8cf9 6f2882b 04e8cf9 2e53cf6 04e8cf9 2bf87ab 4de02dd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
import gradio as gr
from langchain.llms import HuggingFacePipeline
from transformers import AutoTokenizer, AutoModel
import transformers
import torch
from langchain.prompts import PromptTemplate
from langchain.chains import LLMChain
import warnings
warnings.filterwarnings('ignore')
model = 'MD1998/FLAN-T5-V1'
tokenizer=AutoTokenizer.from_pretrained(model)
prompt_template=PromptTemplate(input_variables=["conversation"],
template="""\
You are a helpful, respectful, and honest assistant designed to improve English language skills. Always provide accurate and helpful responses to language improvement tasks, while ensuring safety and ethical standards. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased, positive, and focused on enhancing language skills.
If a question does not make sense or is not factually coherent, explain why instead of answering something incorrect. If you don't know the answer to a question, please don't share false information.
Your role is to guide users through various language exercises and challenges, helping them to practice and improve their English skills in a fun and engaging way. Always encourage users to try different approaches and provide constructive feedback to help them progress.
{conversation}
""")
pipeline=transformers.pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
torch_dtype=torch.bfloat16,
trust_remote_code=True,
device_map="auto",
max_length=64,
do_sample=True,
top_k=10,
top_p=5,
num_return_sequences=1,
eos_token_id=tokenizer.eos_token_id
)
llm=HuggingFacePipeline(pipeline=pipeline, model_kwargs={'temperature':0.1})
chain = LLMChain(llm=llm, prompt=prompt_template, verbose=True)
def greet(prompt):
response = chain.run(prompt)
return response
iface = gr.Interface(fn=greet, inputs="text", outputs="text")
iface.launch()
|