File size: 797 Bytes
966146c
d0a604a
6c68fe0
2e53cf6
 
 
 
04e8cf9
f89e89e
d0a604a
04e8cf9
2e53cf6
 
6c68fe0
2e53cf6
 
 
 
090154d
2e53cf6
 
 
 
 
04e8cf9
2e53cf6
2bf87ab
 
04e8cf9
2e53cf6
 
04e8cf9
 
 
2e53cf6
 
04e8cf9
2bf87ab
4de02dd
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import gradio as gr
from langchain.llms import HuggingFacePipeline
from transformers import AutoTokenizer, AutoModel
import transformers
import torch
import warnings
warnings.filterwarnings('ignore')

model = 'MD1998/FLAN-T5-V1'
tokenizer=AutoTokenizer.from_pretrained(model)

pipeline=transformers.pipeline(
    "text-generation",
    model=model,
    tokenizer=tokenizer,
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto",
    max_length=64,
    do_sample=True,
    top_k=10,
    num_return_sequences=1,
    eos_token_id=tokenizer.eos_token_id
    )

llm=HuggingFacePipeline(pipeline=pipeline, model_kwargs={'temperature':0})

def greet(prompt):
    
    
    return llm(prompt)



iface = gr.Interface(fn=greet, inputs="text", outputs="text")
iface.launch()