MFawad's picture
Update app.py
fe7ca5b
raw
history blame
509 Bytes
import gradio as gr
from fastai.vision.all import *
learn=load_learner('export.pkl')
labels = learn.dls.vocab
def predict(img):
img = PILImage.create(img)
pred,pred_idx,probs = learn.predict(img)
return {labels[i]: float(probs[i]) for i in range(len(labels))}
title='Emergency Vehicle Classifier'
interpretation='default'
gr.Interface(fn=predict, inputs=gr.inputs.Image(shape=(512, 512)), outputs=gr.outputs.Label(num_top_classes=3), title=title, interpretation=interpretation).launch(share=True)